We present an autonomous driving agent on a simulated highway driving scenario with vehicles such as cars and trucks moving with stochastically variable velocity profiles. The focus of the simulated environment is to test tactical decision making in highway driving scenarios. When an agent (vehicle) maintains an optimal range of velocity it is beneficial both in terms of energy efficiency and greener environment. In order to maintain an optimal range of velocity, in this thesis work I proposed two novel reward structures: (a) gaussian reward structure and (b) exponential rise and fall reward structure. I trained respectively two deep reinforcement learning agents to study their differences and evaluate their performance based on a set of parameters that are most relevant in highway driving scenarios. The algorithm implemented in this thesis work is double-dueling deep-Q-network with prioritized experience replay buffer. Experiments were performed by adding noise to the inputs, simulating Partially Observable Markov Decision Process in order to obtain reliability comparison between different reward structures. Velocity occupancy grid was found to be better than binary occupancy grid as input for the algorithm. Furthermore, methodology for generating fuel efficient policies has been discussed and demonstrated with an example. / Vi presenterar ett autonomt körföretag på ett simulerat motorvägsscenario med fordon som bilar och lastbilar som rör sig med stokastiskt variabla hastighetsprofiler. Fokus för den simulerade miljön är att testa taktiskt beslutsfattande i motorvägsscenarier. När en agent (fordon) upprätthåller ett optimalt hastighetsområde är det fördelaktigt både när det gäller energieffektivitet och grönare miljö. För att upprätthålla ett optimalt hastighetsområde föreslog jag i detta avhandlingsarbete två nya belöningsstrukturer: (a) gaussisk belöningsstruktur och (b) exponentiell uppgång och nedgång belöningsstruktur. Jag utbildade respektive två djupförstärkande inlärningsagenter för att studera deras skillnader och utvärdera deras prestanda baserat på en uppsättning parametrar som är mest relevanta i motorvägsscenarier. Algoritmen som implementeras i detta avhandlingsarbete är dubbel-duell djupt Q- nätverk med prioriterad återuppspelningsbuffert. Experiment utfördes genom att lägga till brus i ingångarna, simulera delvis observerbar Markov-beslutsprocess för att erhålla tillförlitlighetsjämförelse mellan olika belöningsstrukturer. Hastighetsbeläggningsgaller visade sig vara bättre än binärt beläggningsgaller som inmatning för algoritmen. Dessutom har metodik för att generera bränsleeffektiv politik diskuterats och demonstrerats med ett exempel.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-289444 |
Date | January 2021 |
Creators | Pradhan, Neil |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:4 |
Page generated in 0.0022 seconds