Return to search

Scalable information-optimal compressive target recognition

We present a scalable information-optimal compressive imager optimized for the target classification task, discriminating between two target classes. Compressive projections are optimized using the Cauchy-Schwarz Mutual Information (CSMI) metric, which provides an upper-bound to the probability of error of target classification. The optimized measurements provide significant performance improvement relative to random and PCA secant projections. We validate the simulation performance of information-optimal compressive measurements with experimental data.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621547
Date20 May 2016
CreatorsKerviche, Ronan, Ashok, Amit
ContributorsUniv Arizona, Coll Opt Sci, Univ Arizona, Dept Elect & Comp Engn, College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States)
PublisherSPIE-INT SOC OPTICAL ENGINEERING
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2016 SPIE
Relationhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2228570

Page generated in 0.0127 seconds