Methods: We address these issues by transforming the TCGA data into the Semantic Web standard Resource Description Format (RDF), link it to relevant datasets in the Linked Open Data (LOD) cloud and further propose an efficient data distribution strategy to host the resulting 20.4 billion triples data via several SPARQL endpoints. Having the TCGA data distributed across multiple SPARQL endpoints, we enable biomedical scientists to query and retrieve information from these SPARQL endpoints by proposing a TCGA tailored federated SPARQL query processing engine named TopFed. Results: We compare TopFed with a well established federation engine FedX in terms of source selection and query execution time by using 10 different federated SPARQL queries with varying requirements. Our evaluation results show that TopFed selects on average less than half of the sources (with 100% recall) with query execution time equal to one third to that of FedX. Conclusion: With TopFed, we aim to offer biomedical scientists a single-point-of-access through which distributed TCGA data can be accessed in unison. We believe the proposed system can greatly help researchers in the biomedical domain to carry out their research effectively with TCGA as the amount and diversity of data exceeds the ability of local resources to handle its retrieval and parsing.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:13048 |
Date | January 2014 |
Creators | Saleem, Muhammad, Padmanabhuni, Shanmukha S., Ngonga Ngomo, Axel-Cyrille, Iqbal, Aftab, Almeida, Jonas S., Decker, Stefan, Deus, Helena F. |
Contributors | Universität Leipzig, BioMed Central |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Source | Journal of Biomedical Semantics 2014, 5:47 doi:10.1186/2041-1480-5-47 |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0097 seconds