Return to search

An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres

The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We propose a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the expectation that the two key types of aerosols-photochemically generated hazes and equilibrium condensate clouds-are expected to form and persist in different regions of a highly irradiated planet's atmosphere. Haze can only be produced on the permanent daysides of tidally locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the nightside and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress-egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, using this diagnostic we find that observations with the James Webb Space Telescope and potentially with the Hubble Space Telescope should be able to distinguish between clouds and haze for currently known HIHJs.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625491
Date18 August 2017
CreatorsKempton, Eliza M.-R., Bean, Jacob L., Parmentier, Vivien
ContributorsUniv Arizona, Dept Planetary Sci, Univ Arizona, Lunar & Planetary Lab
PublisherIOP PUBLISHING LTD
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2017. The American Astronomical Society. All rights reserved.
Relationhttp://stacks.iop.org/2041-8205/845/i=2/a=L20?key=crossref.a9cb1bee6cf8b655c2a2043d7e98767a

Page generated in 0.0025 seconds