Spelling suggestions: "subject:"planet anda satellites: atmosphere"" "subject:"planet ando satellites: atmosphere""
1 |
EVIDENCE FOR THE DIRECT DETECTION OF THE THERMAL SPECTRUM OF THE NON-TRANSITING HOT GAS GIANT HD 88133 bPiskorz, Danielle, Benneke, Björn, Crockett, Nathan R., Lockwood, Alexandra C., Blake, Geoffrey A., Barman, Travis S., Bender, Chad F., Bryan, Marta L., Carr, John S., Fischer, Debra A., Howard, Andrew W., Isaacson, Howard, Johnson, John A. 23 November 2016 (has links)
We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L-band observations and three epochs of Keck NIRSPEC K-band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross-correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of the Keplerian orbital velocity of 40 +/- 15 km s(-1), a true mass of 1.02(-0.28)(+0.61) M-J, a nearly face-on orbital inclination of 15(-5)(+60), and an atmosphere opacity structure at high dispersion dominated by water vapor. This, combined with 11 years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.
|
2 |
Detection of Water Vapor in the Thermal Spectrum of the Non-transiting Hot Jupiter Upsilon Andromedae bPiskorz, Danielle, Benneke, Björn, Crockett, Nathan R., Lockwood, Alexandra C., Blake, Geoffrey A., Barman, Travis S., Bender, Chad F., Carr, John S., Johnson, John A. 01 August 2017 (has links)
The Upsilon Andromedae system was the first multi-planet system discovered orbiting a main-sequence star. We describe the detection of water vapor in the atmosphere of the innermost non-transiting gas giant ups. And. b by treating the star-planet system as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planet's motion and break the mass-inclination degeneracy for this non-transiting planet via deep combined flux observations of the star and the planet. In total, seven epochs of Keck NIRSPEC L band observations, three epochs of Keck NIRSPEC short-wavelength K band observations, and three epochs of Keck NIRSPEC long wavelength K band observations of the ups. And. system were obtained. We perform a multi-epoch cross-correlation of the full data set with an atmospheric model. We measure the radial projection of the Keplerian velocity (K-P = 55 +/- 9 km s(-1)), true mass (M-b = 1.7(-0.24)(+0.33)M(J)), and orbital inclination (i(b) 24 degrees +/- 4 degrees), and determine that the planet's opacity structure is dominated by water vapor at the probed wavelengths. Dynamical simulations of the planets in the ups. And. system with these orbital elements for ups. And. b show that stable, long-term (100 Myr) orbital configurations exist. These measurements will inform future studies of the stability and evolution of the ups. And. system, as well as the atmospheric structure and composition of the hot Jupiter.
|
3 |
THE VARIABILITY OF HCN IN TITAN’S UPPER ATMOSPHERE AS IMPLIED BY THE CASSINI ION-NEUTRAL MASS SPECTROMETER MEASUREMENTSCui, J., Cao, Y.-T., Lavvas, P. P., Koskinen, and T. T. 13 July 2016 (has links)
HCN is an important constituent in Titan's upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960-1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volume mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan's upper atmosphere.
|
4 |
Analytic Scattering and Refraction Models for Exoplanet Transit SpectraRobinson, Tyler D., Fortney, Jonathan J., Hubbard, William B. 27 November 2017 (has links)
Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes-refraction and cloud and/or haze forward-scattering-have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.
|
5 |
A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown DwarfsZhou, Yifan, Apai, Dániel, Lew, Ben W. P., Schneider, Glenn 04 May 2017 (has links)
The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as. brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (similar to 40 visits) of WFC3 observations. and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need. to. be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.
|
6 |
HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101bWakeford, H. R., Stevenson, K. B., Lewis, N. K., Sing, D. K., López-Morales, M., Marley, M., Kataria, T., Mandell, A., Ballester, G. E., Barstow, J., Ben-Jaffel, L., Bourrier, V., Buchhave, L. A., Ehrenreich, D., Evans, T., García Muñoz, A., Henry, G., Knutson, H., Lavvas, P., Lecavelier des Etangs, A., Nikolov, N., Sanz-Forcada, J. 20 January 2017 (has links)
We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H2O absorption features and we rule out a clear atmosphere at 13 sigma. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well-studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.
|
7 |
TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERSParmentier, Vivien, Fortney, Jonathan J., Showman, Adam P., Morley, Caroline, Marley, Mark S. 24 August 2016 (has links)
Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler light. curves of some hot Jupiters are asymmetric: for the hottest planets, the light. curve peaks before secondary eclipse, whereas for planets cooler than similar to 1900 K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler light. curves of hot Jupiters. We demonstrate that the change from an optical light. curve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler light curve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600 K, analogous to the L/T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb, and that the dayside hot spot should often be cloud-free.
|
8 |
Ultraviolet C ii and Si iii Transit Spectroscopy and Modeling of the Evaporating Atmosphere of GJ436bLoyd, R. O. Parke, Koskinen, T. T., France, Kevin, Schneider, Christian, Redfield, Seth 12 January 2017 (has links)
Hydrogen gas evaporating from the atmosphere of the hot-Neptune GJ436b absorbs over 50% of the stellar Lya emission during transit. Given the planet's atmospheric composition and energy-limited escape rate, this hydrogen outflow is expected to entrain heavier atoms such as C and O. We searched for C and Si in the escaping atmosphere of GJ436b using far-ultraviolet Hubble Space Telescope COS G130M observations made during the planet's extended H I transit. These observations show no transit absorption in the C II 1334,1335 angstrom and Si III 1206 angstrom lines integrated over [-100, 100] km s(-1), imposing 95% (2 sigma) upper limits of 14% (C II) and 60% (Si III) depth on the transit of an opaque disk and 22% (C II) and 49% (Si III) depth on an extended highly asymmetric transit similar to that of H I Ly alpha. C+ is likely present in the outflow according to a simulation we carried out using a spherically symmetric photochemical-hydrodynamical model. This simulation predicts an similar to 2% transit over the integrated bandpass, consistent with the data. At line center, we predict the C II transit depth to be as high as 19%. Our model predicts a neutral hydrogen escape rate of 1.6 x 10(9) g s(-1) (3.1 x 10(9) g s(-1) for all species) for an upper atmosphere composed of hydrogen and helium.
|
9 |
Model atmospheres of sub-stellar mass objectsHubeny, Ivan 07 1900 (has links)
We present an outline of basic assumptions and governing structural equations describing atmospheres of sub-stellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code COOLTLUSTY. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.
|
10 |
The Complete Transmission Spectrum of WASP-39b with a Precise Water ConstraintWakeford, H. R., Sing, D. K., Deming, D., Lewis, N. K., Goyal, J., Wilson, T. J., Barstow, J., Kataria, T., Drummond, B., Evans, T. M., Carter, A. L., Nikolov, N., Knutson, H. A., Ballester, G. E., Mandell, A. M. 20 December 2017 (has links)
WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8-1.1 mu m) and G141 (1.1-1.7 mu m) spectroscopic grisms. We measure the predicted high-amplitude H2O feature centered at 1.4 mu m and the smaller amplitude features at 0.95 and 1.2 mu m, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 mu m. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T-eq = 1030(20)(+30) K, and atmospheric metallicity 151(46) (+48) solar, which is relatively high with respect to the currently established mass-metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.
|
Page generated in 0.0885 seconds