• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The intra-pixel sensitivity variation of a CCD

Toyozumi, Hiroyuki, Physics, Faculty of Science, UNSW January 2005 (has links)
The effect of Intra-pixel sensitivity variation (IPSV) in charge-coupled devices (CCDs) can be important in astronomical applications. This thesis studies the IPSV in a front-illuminated three-phase EEV05-20 CCD used in the Automated Patrol Telescope (APT), from multiple points of view. To explore the detailed sensitivity variation within pixels, the CCD was scanned using a 4 \mu meter diameter light beam in four colour bands: B, V, R and I. The resulting images clearly show the IPSVs due to the CCD electrode structure, and its dependence on wavelength. Unexpected ghost images appear in the scan images that are most likely due to the charge transfer inefficiency (CTI) of the CCD. A correction procedure for the CTI effect is presented. Using the pixel response function (PRF) which was derived from the CCD scans, instrumental point spread functions (iPSFs) were calculated from dithered images observed by the APT. The accurate iPSFs allowed us to generate a variety of simulated images of APT observations, enabling us to analyse in detail the effect of IPSV on astronomical observations. One of the astronomical impacts of IPSV is on photometry. The IPSV effect on the precision for estimating star fluxes was studied using both observed and simulated images. The IPSV effect can be expressed as magnitude estimation error maps plotted against the fractional part of a star's coordinates. The IPSV effect introduces \pm 4% errors in star fluxes for observed images with the APT in V band. Another astronomical impact of IPSV is on astrometry. IPSV influences the precision for estimating star coordinates, and this was studied using a number of simulated images. The IPSV effect can be expressed as coordinate estimation error maps plotted against the fractional part of a star's coordinates. The IPSV effect introduces \sim 0.02 pixel errors in RMS for images observed with the APT in V band. The appearance of the unexpected ghost images in the CCD scans suggested that CTI might also affect observed images. We examined the effects on PSFs and photometry. The CTI effect does affect the shapes of PSFs, but only to a small fraction. Its effect on photometry is negligible.
2

A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

Zhou, Yifan, Apai, Dániel, Lew, Ben W. P., Schneider, Glenn 04 May 2017 (has links)
The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as. brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (similar to 40 visits) of WFC3 observations. and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need. to. be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.
3

A submillimetre study of nearby star formation using molecular line data

Drabek-Maunder, Emily Rae January 2013 (has links)
This thesis primarily uses submillimetre molecular line data from HARP, a heterodyne array on the James Clerk Maxwell Telescope (JCMT), to further investigate star formation in the Ophiuchus L1688 cloud. HARP was used to observe CO J = 3-2 isotopologues: 12CO, 13CO and C18O; and the dense gas tracer HCO+ J = 4-3. A method for calculating molecular line contamination in the SCUBA-2 450 and 850 μm dust continuum data was developed, which can be used to convert 12CO J =6-5and J =3-2 maps of integrated intensity (K km s−1) to molecular line flux (mJy beam−1) contaminating the continuum emission. Using HARP maps of 12CO J = 3-2, I quantified the amount of molecular line contamination found in the SCUBA-2 850 μm maps of three different regions, including NGC 1333 of Perseus and NGC 2071 and NGC 2024 of Orion B. Regions with ‘significant’ (i.e. > 20%) molecular line contamination correspond to molecular outflows. This method is now being used to remove molecular line contamination from regions with both SCUBA-2 dust continuum and HARP 12CO map coverage in the Gould Belt Legacy Survey (GBS). The Ophiuchus L1688 cloud was observed in all three CO J = 3-2 isotopologues. I carried out a molecular outflow analysis in the region on a list of 30 sources from the Spitzer ‘c2d’ survey [Evans et al., 2009]. Out of the 30 sources, 8 had confirmed bipolar outflows, 20 sources had ‘confused’ outflow detections and 2 sources did not have outflow detections. The Ophiuchus cloud was found to be gravitationally bound with the turbulent kinetic energy a factor of 7 lower than the gravitational binding energy. The high-velocity outflowing gas was found to be only 21% of the turbulence in the cloud, suggesting outflows are significant but not the dominant source of turbulence in the region. Other factors were found to influence the global high-velocity outflowing gas in addition to molecular outflows, including hot dust from nearby B-type stars, outflow remnants from less embedded sources and stellar winds from the Upper Scorpius OB association. To trace high density gas in the Ophiuchus L1688 cloud, HCO+ J = 4-3 was observed to further investigate the relationship between high column density and high density in the molecular cloud. Non-LTE codes RADEX and TORUS were used to develop density models corresponding to the HCO+ emission. The models involved both constant density and peaked density profiles. RADEX [van der Tak et al., 2007] models used a constant density model along the line-of-sight and indicated the HCO+ traced densities that were predominantly subthermally excited with den- sities ranging from 10^3–10^5 cm^−3. Line-of-sight estimates ranged from several parsecs to 90 pc, which was unrealistic for the Ophiuchus cloud. This lead to the implementation of peaked density profiles using the TORUS non-LTE radiative transfer code. Initial models used a ‘triangle’ density profile and a more complicated log-normal density probability density function (PDF) profile was subsequently implemented. Peaked density models were relatively successful at fitting the HCO+ data. Triangle models had density fits ranging from 0.2–2.0×10^6 cm^−3 and 0.1–0.3×10^6 cm^−3 for the 0.2 and 0.3 pc cloud length models re- spectively. Log-normal density models with constant-σ had peak density ranges from 0.2–1.0 ×10^5 cm^−3 and 0.6–2.0×10^5 cm^−3 for 0.2 and 0.3 pc models respectively. Similarly, log-normal models with varying-σ had lower and upper density limits corresponding to the range of FWHM velocities. Densities (lower and upper limits) ranged from 0.1–1.0 ×10^6 and 0.5–3.0 ×10^5 cm^-3 for the 0.2 and 0.3 pc models respectively. The result of the HCO+ density modelling indicated the distributions of starless, prestellar and protostellar cores do not have a preference for higher densities with respect to the rest of the cloud. This is contrary to past research suggesting the probability of finding a submillimetre core steeply rises as a function of column density (i.e. density; Belloche et al. 2011; Hatchell et al. 2005). Since the majority of sources are less embedded (i.e Class II/III), it is possible the evolutionary state of Ophiuchus is the main reason the small sample of Class 0/I protostars do not appear to have a preference for higher densities in the cloud.
4

Estimation of trigger rates, data rates and data volumes for CTA and observations of SNR RX J0852.0−4622 with H.E.S.S.

Paz Arribas, Manuel 26 July 2017 (has links)
Die vorliegende Arbeit beschäftigt sich mit zwei Aspekten der Gammastrahlungsastronomie. Einerseits studiert sie die Anforderungen an das zukünftige CTA-Observatorium für Gammastrahlung und präsentiert insbesondere Abschätzungen der Datenmengen, die während des Betriebs des Observatoriums anfallen werden. Für das größere CTA-Teleskopfeld auf der Südhalbkugel werden demnach eine Triggerate von 13 kHz und Datenraten von bis zu 2500 MB/s erwartet. Unter der Annahme, dass 15% der Zeit für Beobachtungen genutzt werden können, ergibt sich in 15 Jahren ein Datenvolumen von bis zu 165 PB. Die Implementation eines entsprechenden Systems zur Datenerfassung und -speicherung stellt eine Herausforderung dar, die jedoch mit existierenden Technik bewältigt werden kann. Andererseits befasst sie sich mit dem Supernovaüberrest RX J0852.0-4622 (auch bekannt als Vela Junior), präsentiert die Ergebnisse einer Analyse von Daten, die mit dem H.E.S.S.-Experiment genommen wurden, und geht der Frage nach, ob RX J0852.0-4622 ein kosmischer Teilchenbeschleuniger ist. Dabei erlauben die präzisen Messungen eine im Vergleich zu früheren Veröffentlichungen verbesserte Bestimmung der Eigenschaften der emittierenden Teilchenpopulation. Es ergibt sich, dass das Energiespektrum von RX J0852.0-4622 ein Potenzgesetz ist, das zu hohen Energien hin mit einer Abschneideenergie von 7.2 TeV exponentiell unterdrückt wird. Abschließend wird anhand von Simulation gezeigt, dass CTA die Abschneideenergie von RX J0852.0-4622 signifikant besser bestimmen können wird. Diese genauere Vermessung des Energiespektrums sollte dazu beitragen, den hadronischen oder leptonischen Charakter der Emission aufzuklären. / This work focuses on two different aspects of gamma-ray astronomy. On the one hand, it studies the instrumental challenge posed by the future CTA Observatory by estimating the amount of data to be collected. Based on an analysis of simulated data, the more demanding southern array is expected to have an array trigger rate of 13 kHz, a data rate of up to 2500 MB/s and a data volume after 15 yr of operation and assuming a duty cycle of 15% of up to 165 PB. The design of the data acquisition and storage systems will be a challenge but should be manageable with existing technologies. On the other hand, it studies supernova remnants, by presenting analysis results of the gamma-ray data of the RX J0852.0-4622 supernova remnant (commonly known as Vela Junior) measured with the operating H.E.S.S. experiment and interpreting them in order to check the plausibility of RX J0852.0-4622 being a cosmic ray accelerator. The more precise measurements permit a better determination of the parent particle population properties with respect to previous publications. More precisely, a clear curvature of the spectrum of RX J0852.0-4622 is measured with an exponential energy cut-off at 7.2 TeV. Finally, the analysis of simulated data shows that CTA should be able to significantly improve the determination of the spectral energy cut-off of RX J0852.0-4622, which should help in identifying the nature of the gamma-ray emission.

Page generated in 0.0326 seconds