• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classifying the high-energy sky with spectral timing methods / Klassifizierung des Hochenergiehimmels mittels spektralen und Zeitreihen-Methoden

Kreikenbohm, Annika Franziska Eleonore January 2019 (has links) (PDF)
Active galactic nuclei (AGN) are among the brightest and most frequent sources on the extragalactic X-ray and gamma-ray sky. Their central supermassive blackhole generates an enormous luminostiy through accretion of the surrounding gas. A few AGN harbor highly collimated, powerful jets in which are observed across the entire electromagnetic spectrum. If their jet axis is seen in a small angle to our line-of-sight (these objects are then called blazars) jet emission can outshine any other emission component from the system. Synchrotron emission from electrons and positrons clearly prove the existence of a relativistic leptonic component in the jet plasma. But until today, it is still an open question whether heavier particles, especially protons, are accelerated as well. If this is the case, AGN would be prime candidates for extragalactic PeV neutrino sources that are observed on Earth. Characteristic signatures for protons can be hidden in the variable high-energy emission of these objects. In this thesis I investigated the broadband emission, particularly the high-energy X-ray and gamma-ray emission of jetted AGN to address open questions regarding the particle acceleration and particle content of AGN jets, or the evolutionary state of the AGN itself. For this purpose I analyzed various multiwavelength observations from optical to gamma-rays over a period of time using a combination of state-of-the-art spectroscopy and timing analysis. By nature, AGN are highly variable. Time-resolved spectral analysis provided a new dynamic view of these sources which helped to determine distinct emission processes that are difficult to disentangle from spectral or timing methods alone. Firstly, this thesis tackles the problem of source classification in order to facilitate the search for interesting sources in large data archives and characterize new transient sources. I use spectral and timing analysis methods and supervised machine learning algorithms to design an automated source classification pipeline. The test and training sample were based on the third XMM-Newton point source catalog (3XMM-DR6). The set of input features for the machine learning algorithm was derived from an automated spectral modeling of all sources in the 3XMM-DR6, summing up to 137200 individual detections. The spectral features were complemented by results of a basic timing analysis as well as multiwavelength information provided by catalog cross-matches. The training of the algorithm and application to a test sample showed that the definition of the training sample was crucial: Despite oversampling minority source types with synthetic data to balance out the training sample, the algorithm preferably predicted majority source types for unclassified objects. In general, the training process showed that the combination of spectral, timing and multiwavelength features performed best with the lowest misclassification rate of \\sim2.4\\%. The methods of time-resolved spectroscopy was then used in two studies to investigate the properties of two individual AGN, Mrk 421 and PKS 2004-447, in detail. Both objects belong to the class of gamma-ray emitting AGN. A very elusive sub-class are gamma-ray emitting Narrow Line Seyfert 1 (gNLS1) galaxies. These sources have been discovered as gamma-ray sources only recently in 2010 and a connection to young radio galaxies especially compact steep spectrum (CSS) radio sources has been proposed. The only gNLS1 on the Southern Hemisphere so far is PKS2004-447 which lies at the lower end of the luminosity distribution of gNLS1. The source is part of the TANAMI VLBI program and is regularly monitored at radio frequencies. In this thesis, I presented and analyzed data from a dedicated multiwavelength campaign of PKS 2004-447 which I and my collaborators performed during 2012 and which was complemented by individual observations between 2013 and 2016. I focussed on the detailed analysis of the X-ray emission and a first analysis of its broadband spectrum from radio to gamma-rays. Thanks to the dynamic SED I could show that earlier studies misinterpreted the optical spectrum of the source which had led to an underestimation of the high-energy emission and had ignited a discussion on the source class. I show that the overall spectral properties are consistent with dominating jet emission comprised of synchrotron radiation and inverse Compton scattering from accelerated leptons. The broadband emission is very similar to typical examples of a certain type of blazars (flat-spectrum radio quasars) and does not present any unusual properties in comparison. Interestingly, the VLBI data showed a compact jet structure and a steep radio spectrum consistent with a compact steep spectrum source. This classified PKS 2004-447 as a young radio galaxy, in which the jet is still developing. The investigation of Mrk 421 introduced the blazar monitoring program which I and collaborator have started in 2014. By observing a blazar simultaneously from optical, X-ray and gamma-ray bands during a VHE outbursts, the program aims at providing extraordinary data sets to allow for the generation of a series of dynamical SEDs of high spectral and temporal resolution. The program makes use of the dense VHE monitoring by the FACT telescope. So far, there are three sources in our sample that we have been monitoring since 2014. I presented the data and the first analysis of one of the brightest and most variable blazar, Mrk 421, which had a moderate outbreak in 2015 and triggered our program for the first time. With spectral timing analysis, I confirmed a tight correlation between the X-ray and TeV energy bands, which indicated that these jet emission components are causally connected. I discovered that the variations of the optical band were both correlated and anti-correlated with the high-energy emission, which suggested an independent emission component. Furthermore, the dynamic SEDs showed two different flaring behaviors, which differed in the presence or lack of a peak shift of the low-energy emission hump. These results further supported the hypothesis that more than one emission region contributed to the broadband emission of Mrk 421 during the observations. Overall,the studies presented in this thesis demonstrated that time-resolved spectroscopy is a powerful tool to classify both source types and emission processes of astronomical objects, especially relativistic jets in AGN, and thus provide a deeper understanding and new insights of their physics and properties. / Aktive Galaxienkerne (active galactic nuclei, AGN) gehören zu den hellsten und häufigsten Quellen am extragalaktischen Röntgen- und Gammastrahlenhimmel. Das zentrale supermassive Schwarze Loch erzeugt durch Akkretion des umgebenden Gases eine enorme Leuchtkraft. Einige AGN beherbergen zudem stark kollimierte, leuchtstarke Jets die im gesamten elektromagnetischen Spektrum beobachtet werden. Betrachtet man Jets unter einem kleinen Winkel zu unserer Sichtlinie (sog. Blazare), kann die Jetemission die anderen Strahlungskomponenten des Systems überstrahlen. Die Synchrotronemission von relativistischen Elektronen und Positronen beweist eindeutig die Existenz einer leptonischen Plasmakomponente in Jets. Bis heute aber ist es offen, ob auch schwerere Teilchen, insbesondere Protonen, beschleunigt werden können. Wenn dies der Fall ist, wären AGN vielversprechende Quellen für extragalaktische PeV-Neutrinos, die auf der Erde beobachtet werden. Charakteristische Merkmale von Protonen könnten in der variablen hochenergetischen Emission dieser Objekte verborgen sein. In dieser Arbeit untersuchte ich daher die Breitbandemission, insbesondere die hochenergetische Röntgen- und Gammastrahlung, von AGN mit Jets, um verschiedene offene Fragen bezüglich Jets in AGN zu adressieren. Thematisiert werden sowohl die Teilchenbeschleunigung, wie auch die Plasmakomposition von Jets, oder der evolutionäre Zustand eines AGN selbst. Zu diesem Zweck analysierte ich mittels einer Kombination aus hochmodernen Methoden der Spektroskopie und Zeitreihenanalyse verschiedene Wellenlängenbeobachtungen, die das Breitbandspektrum von optischen bis Gammastrahlen zu verschiedenen Zeitpunkten abdeckten. Von Natur aus sind AGN sehr variabel. Die Kombination der zeitaufgelöster Spektroskopie lieferte somit eine neue dynamische Sicht auf diese Quellen, die dazu beitrug, unterschiedliche Emissionsprozesse zu bestimmen, die sich nur schwer von getrennten Spektral- oder Zeitreihen-Verfahren unterscheiden lassen. Diese Arbeit behandelt zunächst das Problem der Quellenklassifikation, um die Suche nach interessanten Quellen in großen Datenarchiven zu erleichtern und neue variable Quellen zu charakterisieren. Ich nutzte die Zeit- und Spektralanalyse Methoden sowie überwachte Machine-Learning Algorithmen, um ein automatisiertes Verfahren zur Quellklassifizierung zu entwerfen. Das Auswahl der Test- und Trainingsbeispiele basierte auf dem dritten XMM-Newton Punktquellenkatalog (3XMM-DR6). Die Attribute für den maschinellen Lernalgorithmus wurden aus einer automatisierten Spektralmodellierung aller Quellen in dem 3XMM-DR6 definiert, die über 137200 individuelle Detektionen umfasst. Die spektralen Eigenschaften wurden durch Ergebnisse einer einfachen Zeitreihenanalyse sowie durch Multiwellenlängeninformationen ergänzt. Letztere ergaben sich aus den Abgleichen verschiedener Quellkataloge. Das Trainieren des Algorithmus und die Anwendung auf die Testquellen zeigte, dass die Definition der Trainingsquellen für die Vorhersage von Quellklassen unbekannter Quellen entscheidend war. Obwohl das Trainingsset mittels der Generierung von synthetischen Daten von Minderheitsquellklassen ausbalanciert wurde, prognostizierte der Algorithmus bevorzugt jene Quellentypen für nicht klassifizierte Objekte, die am häufigsten im ursprünglichen Trainingsset vorkamen. Im Allgemeinen zeigte der Trainingsprozess, dass die Kombination von Spektral-, Zeitreihen- und Multiwellenlängenattributen bei der Klassifizierung einer großen Menge von unbekannten Objekten mit der niedrigsten Fehlklassifizierungsrate von \\sim2.4\\% am besten war. Die zeitaufgelöste Spektroskopie wurde in zwei zusätzlichen Studien an einzelnen außergewöhnlichen Quellen, Mrk 421 und PKS 2004-447, benutzt, um deren Eigenschaften im Detail zu untersuchen. Beide Objekte gehören zu der Klasse von AGN, die Gammastrahlung emittieren. Eine sehr schwer fassbare Unterklasse sind sogenannte $\gamma$-emittierende Narrow Line Seyfert 1 (gNLS1) Galaxien. Gammastrahlung dieser Quellen wurden erst im Jahr 2010 entdeckt. Man vermutet eine Verbindung zu jungen Radiogalaxien, insbesondere zu kompakten Radioquellen mit einem steilen Radiospektrum (sog. Compact Steep Spectrum sources, CSS). Die bisher einzige bestätigte gNLS1 auf der südlichen Hemisphäre ist PKS 2004-447, die am unteren Ende der Helligkeitsverteilung von gNLS1 liegt. Die Quelle ist Teil des TANAMI VLBI-Programms und wird regelmäßig im Radiobereich beobachtet. In dieser Dissertation präsentiere ich Ergebnisse einer Multiwellenlängen-Kampagne von PKS 2004-447, die ich und meine Kollegen 2012 durchgeführt haben und die durch weitere Einzelbeobachtungen zwischen 2013 und 2016 ergänzt wurde. Ich konzentrierte mich auf die detaillierte Analyse der Röntgenemission und eine erste Analyse der dynamischen Multiwellenlängen Spektralen Energieverteilung (spectral energy distribution, SED) von Radio bis Gammastrahlung. Dank der dynamischen SED konnte ich zeigen, dass frühere Studien das optische Spektrum der Quelle falsch interpretierten, was zu einer Unterschätzung der hochenergetischen Emission führte und eine Diskussion über die Quellklasse entfachte. In meiner Studie zeigte ich, dass die gesamten spektralen Eigenschaften konsistent durch Jetemission erklärt werden kann, die Synchrotronstrahlung und Inverse Comptonstreuung von beschleunigten Leptonen umfasst. Die Breitbandemission ist typischen Exemplaren von Flachspektrum-Radio-Quasaren sehr ähnlich und weist im Vergleich keine ungewöhnlichen Eigenschaften auf. Interessanterweise zeigten die hochaufgelöste Radiobeobachtungen eine kompakte Jet-Struktur und ein steiles Radiospektrum, das mit den Eigenschaften von kompakten Quellen mit steilem Radiospektrum (compact steep spectrum sources, CSS sources) verträglich ist. Dies klassifiziert PKS 2004-447 als junge Radiogalaxie, in der sich der Jet noch entwickelt. Die Untersuchung von Mrk 421 führt das Blazar-Monitoring-Program ein, das ich und meine Mitarbeiter 2014 begonnen haben. Dabei werden Blazare während eines Strahlungsausbruchs im TeV Energieband gleichzeitig in den optischen, Röntgen- und Gammastrahlenbändern beobachtet. Das Ziel des Programms ist die Erzeugung von dynamischen SEDs von hoher spektraler und zeitlicher Auflösung zu ermöglichen. Das Programm nutzt dafür die dichte Überwachung von Blazaren im TeV Bereich durch das FACT-Teleskop. Seit 2014 sind drei markante Blazare Teil unseres Programms. 2015 zeigte eine unserer beobachteten Quellen, Mrk 421, einen moderaten Ausbruch im TeV Band und löste damit unser Programm zum ersten Mal aus. In dieser Arbeit habe ich unsere Beobachtungen im Optischen bis TeV Bereich dieser Quelle benutzt um eine erste zeitaufgelöste Spektroskopie der dynamischen SED dieser Quelle vorzunehmen. Die Analyse der Flussvariabilität in unterschiedlichen Energiebändern bestätigte eine enge Korrelation zwischen der Röntgen- und TeV-Emission. Dies deutet darauf hin, dass diese Strahlungskomponenten im Jet kausal verknüpft sind. Ich entdeckte, dass die Helligkeitsvariationen im optischen Band scheinbar sowohl korreliert als auch antikorreliert mit der Strahlung im Röntgen- und Gammaband waren, was auf eine unabhängige Emissionskomponente hinwies. Darüber hinaus zeigten die dynamischen SEDs zwei unterschiedliche Verhalten bei Strahlungsausbrüchen, die sich im Vorhandensein oder Fehlen einer Verschiebung des niederenergetischen Emissionsmaximums unterschieden. Diese Ergebnisse unterstützen die Hypothese, dass während der Beobachtungen von Mrk 421 mehr als eine Emissionsregion zu dessen Breitbandemission beigetragen haben. Die Studien in dieser Arbeit zeigen, dass die zeitaufgelöste Spektroskopie ein leistungsfähiges Werkzeug ist, um sowohl Quellentypen als auch die Emissionsprozesse einzelner Quellen zu klassifizieren und so ein tieferes Verständnis und neue Einblicke in die Physik und Eigenschaften astronomischer Objekte, insbesondere relativistischer Jets in AGN zu ermöglichen.
2

Search for neutrino-induced cascades with 5 years of the AMANDA-II data

Actis, Oxana 12 November 2008 (has links)
Das Antarctic Muon And Neutrino Detector Array (AMANDA) ist ein Cherenkov Detektor, der sich im Gletscher der Antarktis am Südpol befindet. Wir präsentieren die Analyse von Daten, die in den Jahren 2000 bis 2004 gesammelt wurden, die einer effektiven Detektorlaufzeit von 1001 Tagen entsprechen. Die Suche zielt auf den Nachweis von elektomagnetische und hadronische Teilchenschauern, so gennante Kaskaden, die durch Elektron- und Tauneutrinowechselwirkung produziert werden können. Die hadronischen Kaskaden können auch über neutrale Ströme Wechselwirkung von Neutrinos aller Arten produziert werden. Der Kaskadenkanal hat einige Vorteile in der Suche nach einem diffusen Fluss von astrophysikalischen Neutrinos. Durch die gute Energieauflösung des AMANDA Detektors kann man zwischen einem harten astrophysikalische Spektrum und einem weichen atmosphärischen Spektrum unterscheiden. Außerdem ist der atmosphärischen Elektronneutrinos Fluss um eine Gößenordnung kleiner als der atmosphärische Myonneutrinofluss. Der Untergrund von atmosphärischem Myonen aus Luftschauern kann unterdrückt werden, weil diese als Spuren im Detektor erscheinen und leicht zu identifizieren sind. Mit der hohen Untergrundunterdrückung ist es möglich die Analyse über einen Raumwinkel von 4pi für Energien gegen 50 TeV zu erstrecken. Die Anzahl von gefundenen Ereignissen in dieser Analyse stimmt mit der Erwartung von Hintergrundereignissen überein. Deshalb berechnen wir eine obere Grenze für den diffusen Neutrinofluss aller Neutrinoarten, unter der Annahme, dass alle Neutrinoarten im Verhältnis 1:1:1 auftreten. Die obere Grenze für einen Nuetrinofluss im Energiebereich von 40 TeV bis 9 PeV mit einem Spektrum von E-2 ist 3.96x10-7 GeV s-1 sr-1 cm-2 bei einem Konfidenzniveau von 90%. Dies ist momentan die niedrigste Grenze für einen diffusen Neutrinoflüss aller Neutrinoarten. / The Antarctic Muon And Neutrino Detector Array (AMANDA) is a Cherenkov detector deployed in the Antarctic ice cap at the South Pole. We present the analysis of the AMANDA data collected during 1001 effective days of the detector lifetime be tween the years 2000 and 2004. We focus our search on electromagnetic and hadronic cascades which are produced in charged-current interactions of high-energy electron or tau neutrinos and in neutral-current interactions of neutrinos of any flavor. There are several advantages associated with the cascade channel in the search for a "diffuse" flux of astrophysical neutrinos. The AMANDA''s energy resolution allows us to distinguish between a hard astrophysical spectrum and a soft atmospheric spectrum. In addition, the flux of atmospheric electron neutrinos is lower than that of atmospheric muon neutrinos by one order of magnitude, and the background from downward-going atmospheric muons can be suppressed due to their track-like topology. The low background in this channel allows us to attain a 4pi acceptance above energies of about 50 TeV. The number of events observed in this analysis is consistent with the background expectations. Therefore, we calculate an upper limit on the diffuse all-flavor neutrino flux assuming a flavor ratio 1:1:1 at the detection site. A flux of neutrinos with a spectrum falling as E-2 is limited to 3.96x10-7 GeV s-1 sr-1 cm-2 at 90% C.L. for a neutrino energy range spanning from 40 TeV to 9 PeV. This upper limit is currently the most sensitive limit on the diffuse all-flavor astrophysical neutrino flux.
3

Search for cosmic point sources of high energy neutrinos with the AMANDA-II detector

Hauschildt, Tonio 15 October 2004 (has links)
Diese Arbeit befasst sich mit der Suche nach astrophysikalischen Punktquellen hochenergetischer Neutrinos mit Hilfe des AMANDA-II-Detektors. Der AMANDA-Detektor erlaubt die Rekonstruktion neutrino-induzierter Myonen durch die Detektion des von diesen Myonen emittierten Cherenkov-Lichts. Es wird der Datensatz des Jahres 2000 mit einer effektiven Datennahmezeit von 197 Tagen analysiert. Nach der Unterdrückung eines wesentlichen Teils des Untergrundes atmosphärischer Myonen durch Selektion als aufwärts laufend rekonstruierter Ereignisse werden weitere Selektionskriterien entwickelt, um einen Datensatz herauszufiltern, der von durch atmosphärische Neutrinos induzierten Myonen dominiert ist. Diese 699 Ereignisse werden im Hinblick auf signifikante Beiträge von Punktquellen untersucht, d.h. auf Überschüsse der Ereigniskonzentration aus bestimmten Richtungen. Weder die Betrachtung einer Auswahl möglicher Neutrinoquellen (z.B. aktive galaktische Kerne, Mikroquasare oder Supernova-Überreste), noch eine Suche am gesamten Nordhimmel durch die Platzierung überlappender Suchfenster, noch die Untersuchung der Raumwinkel-Abstände zwischen Paaren selektierter Ereignisse ergeben einen signifikanten Hinweis auf die Existenz von Quellen astrophysikalischer hochenergetischer Neutrinos. Unter der Annahme eines Neutrinospektrums dN/dE ~ E^(-2) werden Flussgrenzen für die Neutrino-Flüsse der ausgewählten Quellenkandidaten sowie für die neutrino-induzierten Myonflüsse angegeben, die im Mittel bei der Sensitivität von E^2 dN(Neutrinos)/dE = 2*10^(-7) GeV cm^(-2) s^(-1) bzw. N(Myonen) = 2*10^(-15) cm^(-2) s^(-1) liegen. Dies sind zur Zeit die besten Grenzen für die Neutrinoflüsse von astrophysikalischen Quellen in der nördlichen Hemisphäre. / We describe the search for astrophysical sources of high energy neutrinos with the AMANDA-II detector. This detector allows for reconstruction of neutrino induced muon tracks by the Cherenkov radiation emitted by relativistic muons. We analyze the AMANDA-II data recorded in the year 2000 with a lifetime of 197 days. A large fraction of the background of atmospheric muons can be suppressed by the selection of events reconstructed as upward moving tracks. We develop further quality criteria, which lead to the extraction of a sample of 699 neutrino event candidates, dominated by atmospheric neutrinos. We analyze this data sample in view of significant contributions from neutrino point sources, which would be observable as enhancements of the event density from certain directions. We have not found a significant indication of the existence of astrophysical high energy neutrino sources, neither by the investigation of source candidates (e.g. Active Galactic Nuclei, microquasars, or supernova remnants), nor by a binned search in the complete Northern sky, nor by the investigation of angular distances between pairs of reconstructed event directions. Assuming power-law neutrino spectra dN/dE ~ E^(-2), we calculate limits on the neutrino fluxes and the neutrino induced muons fluxes from a list of selected neutrino source candidates. The sensitivity of the AMANDA-II detector, i.e. the average neutrino and muon flux limits, amounts to E^2 dN(neutrinos)/dE = 2*10^(-7) GeV cm^(-2) s^(-1) and N(muons) = 2*10^(-15) cm^(-2) s^(-1), respectively. These are currently the best limits on neutrino fluxes from astrophysical objects in the Northern hemisphere.
4

Search for atmospheric muon-neutrinos and extraterrestric neutrino point sources in the 1997 AMANDA-B10 data

Curland, Alexander Biron von 02 May 2002 (has links)
Deutsche Zusammenfassung Die vorliegende Dissertation beschäftigt sich einerseits mit der Suche nach atmosphärischen Myonneutrinos und andererseits mit der Suche nach extraterrestrischen Neutrinopunktquellen in dem Datensatz, welcher im Jahre 1997 durch den AMANDA-Detektor aufgenommenen wurde. In dieser Arbeit wird zunächst die kosmische Strahlung eingeführt. Die Suche nach den Quellen dieser Strahlung wurde bisher insbesondere mit Hilfe der geladenen kosmischen Strahlung selber, sowie mit Hilfe von Cherenkovteleskopen für Gammastrahlen durchgeführt. Die mit diesen Techniken gewonnenen Erkenntnisse lassen bisher jedoch noch keine eindeutigen Schlüsse über die Quellen der geladenen kosmischen Strahlung zu. Dies motiviert den Versuch, mit Hilfe der Neutrinoastronomie ein neues Fenster zu den Quellen zu eröffnen. Es gibt theoretische Modelle für verschiedene potentielle Neutrinoquellen. Szenarien, in denen massive Teilchen zerfallen und die Zerfallsprodukte ihre kinetische Energie aus der freigewordenen Ruhemasse gewinnen, spielen in dieser Arbeit eine untergeordnete Rolle. Ausführlicher dargestellt werden die konventionellen Modelle, in denen geladene Teilchen mit Hilfe der sogenannten Fermibeschleunigung in astrophysikalischen Schockwellen und/oder Magnetfeldern beschleunigt werden. Hochenergetische Neutrinos entstehen nur bei Quellen, welche Hadronen beschleunigen. Insbesondere die Klasse der aktiven galaktischen Kerne (AGNs) sind hierbei interessant. Die vor einigen Jahren entwickelten vereinheitlichten AGN-Schemata sind ein wichtiger Schritt auf dem Weg, diese Objekte zu verstehen. Andere potentielle Quellen sind Supernovae und ihre überreste, Mikroquasare, sowie die Quellen hochintensiver Gammastrahlenausbrüche (GRBs). Hoch spekulativ sind Quellen, welche im elektromagnetischen Spektrum unsichtbar sind, oder auch bisher vollkommen unerwartete Quellen. Unabhängig von der genauen Natur möglicher Neutrinoquellen müssen für die Beschreibung der von ihnen ausgesendeten Neutrinoflüsse Oszillationseffekte zwischen den verschiedenen Neutrinofamilien berücksichtigt werden. Der Nachweis der hochenergetischen Neutrinos soll mit dem AMANDA-Detektor oder ähnlichen Teleskopen erfolgen. Das derzeitige AMANDA-Teleskop AMANDA-II wurde in den Jahren 1995 bis 2000 aufgebaut. Es basiert auf dem Nachweis von neutrinoinduzierten Myonen mit Hilfe des Cherenkoveffektes. Das Cherenkovlicht wird hierbei von, in einem Gitter angeordneten, großen Sekundärelektronenvervielfachern registriert. Die gewonnene Zeitinformation erlaubt eine Richtungsrekonstruktion. Das Charakteristikum für ein Neutrinoereignis ist ein aufwärts laufendes Myon, da das Neutrino das einzige bekannte Teilchen ist, welches die Erde durchqueren und ein aufwärts laufendes Myon erzeugen kann. Die vorliegende Arbeit untersucht Daten, die mit Hilfe des AMANDA-B10-Detektors im Jahre 1997 genommen wurden. Die Daten bestehen aus etwa $10^9$ atmosphärischen Myon- und etwa 5000 atmosphärischen Neutrinoereignissen. Um die experimentell gewonnenen Daten analysieren zu können, wird der Vergleich zu simulierten Daten benötigt. Im Rahmen dieser Arbeit wurden Flüsse atmosphärischer Myonen mit den Programmen basiev und Corsika, Flüsse neutrinoinduzierter Myonen mit nusim und nu2mu generiert. Während eine hohe Zahl von neutrinoinduzierten Myonen simuliert werden konnte, blieb die Zahl der simulierten atmosphärischen Myonen weit hinter der Zahl der experimentell gemessenen zurück. Die Propagation der simulierten Myonen sowie die Detektorsimulation erfolgte mit den Programmen mudedx bzw. amasim. Die Zeit-, Orts- und Amplitudeninformationen der gemessenen -- wie auch der simulierten -- Daten wurden anschließend kalibriert. Das erste Ziel der Analyse war die Extrahierung eines Satzes atmosphärischer Neutrinos und ein Verständnis der absoluten Sensitivität des Detektors. Die hierfür notwendige Prozessierung der Daten erfolgte in mehreren Schritten. Dabei wechselten sich immer exaktere (aber auch immer langsamere) Richtungsrekonstruktionen mit immer strengeren Qualitäts- und Winkelschnitten zur Datenreduktion ab. Die Rekonstruktionen bestanden sowohl aus schnellen analytischen Richtungsapproximationen, wie auch aus solchen, die auf langsamen Minimierung von Likelihoodfunktionen basierten. Die Schnitte wurden auf topologische Grössen, wie auch auf Parameter, welche aus der Rekonstruktion gewonnen wurden, angewandt. Die Schnitte waren notwendig, um Neutrinoereignisse aus dem weit zahlreicheren Untergrund atmosphärischer Myonenereignisse herauszufiltern. Es wurden zwei stark reduzierte Datensätze ("BG-10" mit 223 Ereignissen und "BG-100" mit 369 Ereignissen) aus den gemessenen Daten extrahiert. Es konnte gezeigt werden, dass hiervon ca. 15 bzw. 100 Ereignisse durch atmosphärische Myonen bedingt waren. Die Ergebnisse stimmen sehr gut mit der Erwartung für atmosphärische Neutrinos überein, wobei die Erwartung eine Unsicherheit von bis zu 63% aufweist. Mit dem BG-10 Datensatz war somit das erste Ziel der Analyse erfüllt. Der BG-100 Datensatz sollte dem zweiten Ziel dieser Arbeit dienen: der Suche nach extraterrestrischen Neutrinoquellen. Für dieses zweite Ziel musste zunächst mit der effektiven Fläche} ein Maß für die Sensitivität des Detektors bezüglich extraterrestrischer Neutrinos eingeführt werden. Anschließend wurde die Güte der Richtungsrekonstruktion bestimmt. Hiermit konnte die optimale Grösse der zu benutzenden Suchfenster festgelegt werden. Für diese Suchfenster wurde dann die Effizienz der Rekonstruktion bestimmt. Die Effizienz ist ein Maß für den Anteil der Neutrinoereignisse, für den die Rekonstruktion korrekt bestimmt, aus welchem Suchfenster sie stammen. Nach diesen vorbereitenden Untersuchungen konnte die Quellsuche beginnen. Für diese Suche waren nun sowohl atmosphärische Myonereignisse, als auch Ereignisse, die durch atmosphärische Neutrinos hervorgerufen wurden, Untergrund. Für die Suche wurden drei verschiedene Strategien angewendet. Zunächst wurde ein Netz aus 374 aneinander angrenzenden Suchfenstern konstruiert. Basierend auf der erwarteten Anzahl von Untergrundereignissen für jedes Suchfenster wurden Wahrscheinlichkeiten berechnet, dass die Ereignisse ausschließlich Untergrundereignisse sind. Durch die große Zahl an Suchfenstern gab es einige Fenster, bei denen diese Wahrscheinlichkeit recht gering war. Insgesamt jedoch gab es keinen signifikanten Hinweis darauf, dass die Messung nicht auschließlich durch Untergrund erklärt werden kann. Die zweite Strategie bestand in dem Versuch, mit Hilfe einer Clusteranalyse Punktquellen zu finden. Auch hier wurden keine Hinweise auf Punktquellen gefunden. Schließlich wurde in Richtung von 62 vorselektierten potentiellen Quellen nach Ereignisüberschüssen gesucht -- ebenfalls ohne ein positives Ergebnis. Daraufhin wurden obere Flussgrenzen abgeleitet. Diese Grenzen wurden sowohl richtungsunabhängig als auch für die zuvor selektierten potentiellen Quellen berechnet. In beiden Fällen wurde dabei für das Quellspektrum ein spektraler Index gamma = -2 angenommen. Für Neutrinoenergien E > 10 GeV und Deklinationen > 33 Grad wurden integral folgende globale, obere Flussgrenzen berechnet: Myonfluss: 1.41 * 10^-14 cm^-2 s-1 und Neutrinofluss: 1.65 * 10^-7 cm^-2 s^-1 . Nach der "Eichung" am Fluss atmosphärischer Neutrinos konnte die systematische Unsicherheit auf diese Grenzen zu 46% (systematisch) plus 7% (statistisch) abgeschätzt werden. Für die 62 ausgewählten Quellen wurden individuelle Flussgrenzen berechnet. Diese waren im Durchschnitt etwa einen Faktor drei besser als die integralen Grenzen für den entsprechenden Deklinationsbereich. Bei 48 potentiellen Quellen waren dies sowohl die ersten Grenzen auf ihren Neutrino- als auch die ersten Grenzen auf ihren neutrinoinduzierten Myonenfluss. Für eine weitere Quelle konnte erstmals eine Grenzen auf den Neutrinofluss abgeleitet werden. Bei den 14 restlichen Quellen konnten in fünf Fällen beide bisher publizierten Grenzen verbessert werden, in zwei weiteren zumindest die Grenze auf den Neutrinofluss. Im Anhang werden Daten bereitgestellt, mit denen die errechneten Grenzen auch in Grenzen für andere spektrale Indizes umgerechnet oder auch Grenzen für weitere Quellen abgeleitet werden können. / Abstract The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10^9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 events (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E^-2 neutrino spectra, typical flux limits for selected sources of the order of 10^-14 cm^-2 s^-1 for muon fluxes and 10^-7 cm^-2 s^-1 for neutrino fluxes have been obtained.
5

Characterizing cosmic neutrino sources

Mohrmann, Lars 30 November 2015 (has links)
Das IceCube Neutrino Observatorium ist ein km^3-großes Neutrinoteleskop und befindet sich am geographischen Südpol. Das Ziel des Experiments ist es, kosmische Neutrinos nachzuweisen. Es wird erwartet, dass solche Neutrinos in Wechselwirkungen von hochenergetischer kosmischer Strahlung mit Materie oder Photonen in der Nähe ihrer Beschleunigungsumgebung entstehen. Der erste Nachweis für einen Fluss von kosmischen Neutrinos wurde von der IceCube-Kollaboration erbracht. Der Ursprung des Flusses ist noch nicht bekannt, dennoch können die Eigenschaften der Quellen durch eine Messung des Energiespektrums und der Zusammensetzung aus Elektron-, Muon-, und Tau-Neutrinos des Flusses eingeschränkt werden. Die vorliegende Arbeit stellt die erste umfassende Analyse von Daten des IceCube-Experiments im Hinblick auf diese Eigenschaften des Flusses dar. Hierfür wurden mehrere Datensätze kombiniert und gemeinsam analysiert. Es wurden experimentell beobachtete Verteilungen von rekonstruierter Energie, Zenithwinkel und Teilchen-Signatur mit Modellverteilungen angepasst. Unter der Annahme, dass der Fluss isotrop ist und zu gleichen Teilen aus allen Neutrino-Flavors besteht, wird das Spektrum durch ein Potenzgesetz mit Normalisierung (6.7_{-1.2}^{+1.1})x10^{-18}GeV^{-1}s^{-1}sr^{-1}cm^{-2} bei 100 TeV und spektralem Index -2.50+-0.09 zwischen Neutrino-Energien von 25 TeV und 2.8 PeV gut beschrieben. Ein spektraler Index von -2 kann mit einer Signifikanz von 3.8 Standardabweichungen ausgeschlossen werden. Die Flavor-Zusammensetzung ist kompatibel mit Erwartungen für Standard-Prozesse der Neutrino-Produktion. Die ausschließliche Produktion von Elektron-Neutrinos kann hingegen mit einer Signifikanz von 3.6 Standardabweichungen ausgeschlossen werden. Unter der Annahme, dass die Neutrino-Flavor während der Propagation von den Quellen zur Erde durch Standard-Neutrino-Oszillationen transformiert werden, beträgt der gemessene Anteil an Elektron-Neutrinos an der Erde (18+-11)%. / The IceCube Neutrino Observatory is a km^3-sized neutrino telescope located at the geographical South Pole. Its primary purpose is the detection of high-energy cosmic neutrinos. Such neutrinos are expected to be produced in interactions of high-energy cosmic rays with ambient matter or photons close to their acceleration sites. The IceCube Collaboration has reported the first evidence for a flux of high-energy cosmic neutrinos. While the origin of the flux remains unknown so far, the properties of its sources can be constrained by measuring its energy spectrum and its composition of electron, muon, and tau neutrinos. The present work constitutes the first comprehensive analysis of IceCube data with respect to these principal characteristics of the flux. Several data sets were assembled and simultaneously studied in a combined analysis. Experimentally observed distributions of reconstructed energy, zenith angle and particle signature were fitted with model distributions. Assuming the cosmic neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum is well described by a power law with normalization (6.7_{-1.2}^{+1.1})x10^{-18}GeV^{-1}s^{-1}sr^{-1}cm^{-2} at 100 TeV and spectral index -2.50+-0.09 for neutrino energies between 25 TeV and 2.8 PeV. A spectral index of -2 is disfavored with a significance of 3.8 standard deviations. The flavor composition is compatible with that expected for standard neutrino production processes at the sources. However, a scenario in which only electron neutrinos are produced is disfavored with a significance of 3.6 standard deviations. Assuming that standard neutrino oscillations transform the neutrino flavors during propagation from the sources to the Earth, the measured fraction of electron neutrinos at Earth is (18+-11)%.
6

Searches for a Dark Matter annihilation signal with Imaging Atmospheric Telescopes

Birsin, Emrah 23 July 2015 (has links)
Erste Anzeichen für die Existenz von Dunkler Materie wurden 1933 entdeckt. Der Astrophysiker Fritz Zwicky beobachtete die Geschwindigkeitsverteilung im Coma Cluster und fand dabei heraus, dass 400 mal mehr Materie im Galaxie Haufen sein muss, damit dieser gravitativ gebunden sein kann oder der Galaxie Haufen würde sich aufösen. Trotz erheblicher Bemühungen über die letzten 80 Jahre ist nicht viel über Dunkle Materie bekannt. Das einzige was man weiÿ ist, dass Dunkle Materie gravitativ aber nicht elektromagnetisch wechselwirkt und Dunkle Materie stellt den gröÿten Bestandteil der Materie im Universum da. Doch derzeitige Experimente die nach Dunkler Materie suchen, sowohl direkte Suchen als auch indirekte, beginnen sensitiv genug zu werden um interessante Parameterbereiche von Dunkle Materie Kandidaten zu untersuchen wie das leichteste Super-symmetrische Teilchen, was bedeutet, dass die Entdeckung von Dunkler Materie in der nahen Zukunft sein könnte. In dieser Arbeit wird eine Signalsummierung von H.E.S.S. Zwerg Galaxien Daten durchgeführt und obere Ausschlussgrenzen berechnet. Weiterhin wird die Leistung einer Dunklen Materie Suche im galaktischen Zentrum durch CTA präsentiert für verschiedene mögliche Teleskop Anordnungen und verschiedene Annihilation Kanäle. Die Ergebnisse werden zeigen, dass CTA in der Lage sein wird geschwindigkeitsgemittelte Annihilations Wirkungsquerschnitte von 3 * 10^-26 cm^3s^1 und geringer, der geschwindigkeitsgemittelte Annihilations Wirkungsquerschnitt der für schwach wechselwirkende Dunkle Materie erwartet wird, in 100 h zu erreichen. Diese Beobachtungszeit kann innerhalb von ein bis zwei Jahren erreicht werden. / First indications for the existence of Dark Matter appeared in 1933. The astrophysicist Fritz Zwicky observed the velocity dispersion of the Coma Cluster and found out that 400 times the visible mass must be contained in the galaxy cluster or the cluster could not be gravitationally bound and would disperse.Despite extensive efforts over the last 80 years not much is known about Dark Matter. The facts known are that Dark Matter interacts via gravitation, does not interact electromagneticly and is the main constituent of matter. But current experiment searching for Dark Matter directly and indirectly begin to reach sensitivities that can probe interesting parameter spaces for Dark Matter candidates like the lightest supersymmetric particle, meaning the first Dark Matter detections could happen in the near future.In this thesis a dwarf stacking analysis for Dark Matter signal search using H.E.S.S. data is performed and a upper limit is calculated. Furthermore the prospect for a Dark Matter search with CTA in the galactic center region of the Milky Way is presented for different candidate arrays and different annihilation channels. The results will show that CTA will be able to reach velocity annihilation below 3 *10^-26 cm^3s^-1, the velocity annihilation crosssection expected for a weakly interacting Dark Matter particle, within 100 h of observation which can reasonably be acquired within one to two years.
7

Measurement of the iron spectrum in cosmic rays with the VERITAS experiment

Fleischhack, Henrike 25 January 2017 (has links)
Das Energiespektrum der kosmischen Strahlung bietet wichtige Hinweise auf ihren Ursprung und ihre Ausbreitung. Verschiedene Messtechniken müssen kombiniert werden, um den ganzen Energiebereich abdecken zu können: Direkte Messungen mit Teilchendetektoren bei niedrigen Energien sowie indirekte Messungen von Luftschauern bei hohen Energien. Dazu kommt die Messung von Photonen, hauptsächlich im GeV- und TeV-Bereich, die bei der Wechselwirkung von kosmischer Strahlung mit Materie oder elektromagnetischen Feldern entstehen. Im Folgenden werde ich zwei Studien dazu vorstellen, die beide auf Daten des abbildenden Tscherenkow-Teleskopes VERITAS beruhen. Erstens stelle ich eine Messung das Energiespektrums von Eisenkernen in der kosmischen Strahlung vor. Für die Bestimmung der Energie und Ankunftsrichtung der Primärteilchen benutze ich eine neuartige Template-Likelihood-Methode, die hier erstmals auf Eisenschauer angewendet wird. Zur Identifizierung der Eisenschauer benutze ich unter anderem das sogenannte direkte Tscherenkow-Licht, welches von geladenen Teilchen vor der ersten Wechselwirkung ausgestrahlt wird. Dazu kommt eine multivariate Klassifizierungsmethode, um den Verbleibenden Untergrund zu charakterisieren. Das so gemessene Energiespektrum von Eisen wird im Bereich von 20 TeV bis 500 TeV gut durch ein Potenzgesetz beschrieben. Zweitens beschreibe ich eine Suche nach Gammastrahlung oberhalb von 100 GeV von den drei Galaxien Arp 220, IRAS 17208-0014 und IC 342. Diese drei Galaxien haben hohe Sternentstehungsraten und daher viele Supernova-Überreste, welche kosmische Strahlung erzeugen. Diese wechselwirkt erwartungshalber mit den dichten Staubwolken in den Sternentstehungsgebieten und erzeugt Gammastrahlung. VERITAS konnte keine solche Gammastrahlung messen. Die daraus abgeleitete Höchstgrenze für die Luminosität schränkt theoretische Modelle der Erzeugung und Propagation von kosmischer Strahlung in der Galaxie Arp 220 ein. / The energy spectrum of cosmic rays can provide important clues as to their origin and propagation. Different experimental techniques have to be combined to cover the full energy range: Direct detection experiments at lower energies and indirect detection via air showers at higher energies. In addition to detecting cosmic rays at Earth, we can also study them via the electromagnetic radiation, in particular gamma rays, that they emit in interactions with gas, dust, and electromagnetic fields near the acceleration regions or in interstellar space. In the following I will present two studies, both using data taken by the imaging air Cherenkov telescope (IACT) VERITAS. First, I present a measurement of the cosmic ray iron energy spectrum. I use a novel template likelihood method to reconstruct the primary energy and arrival direction, which is for the first time adapted for the use with iron-induced showers. I further use the presence of direct Cherenkov light emitted by charged primary particles before the first interaction to identify iron-induced showers, and a multi-variate classifier to measure the remaining background contribution. The energy spectrum of iron nuclei is well described by a power law in the energy range of 20 to 500 TeV. Second, I present a search for gamma-ray emission above 100 GeV from the three star-forming galaxies Arp 220, IRAS 17208-0014, and IC342. Galaxies with high star formation rates contain many young and middle-aged supernova remnants, which accelerate cosmic rays. These cosmic rays are expected to interact with the dense interstellar medium in the star-forming regions to emit gamma-ray photons up to very high energies. No gamma-ray emission is detected from the studied objects and the resulting limits begin to constrain theoretical models of the cosmic ray acceleration and propagation in Arp 220.
8

Search for High Energetic Neutrinos from Core Collapse Supernovae using the IceCube Neutrino Telescope

Stasik, Alexander Johannes 22 January 2018 (has links)
Die Entdeckung eines hochenergetischen Flusses astrophysikalischer Neutrinos stellt einen wesentlichen physikalischen Durchbruch der letzten Jahre dar. Trotz allem ist der Ursprung dieser Neutrinos immer noch unbekannt. Die Suche nach den Quellen der hochenergetischen kosmischen Strahlung ist direkt verbunden mit der Suche nach Neutrinos, da diese in den gleichen hadronischen Prozessen erzeugt werden und eine Neutrinoquelle deshalb einen direkten Hinweis auf eine Quelle der kosmischen Strahlung darstellen würde. Viele potentielle Quellen der Neutrinos werden diskutiert, darunter Kern-Kollaps Supernovae. In dieser Arbeit werden sieben Jahre Daten des IceCube Neutrinoteleskopes mit der Richtung mehreren Hundert Kernkollaps-Supernovae auf Korrelation getestet. Die Analyse gewinnt dabei durch die gute Richtungsrekonstruktion der 700000 Muonspurdaten und der großen Datenbank optische beobachteter Supernovae. Die Sensitivität der zeitabhängigen Likelihood-Analyse wird durch die Kombination mehrere Quellen in einer einzigen Analyse gesteigert. Es wurde kein statistisch signifikantes Cluster von Neutrinos an den Positionen der Supernovae gefunden. Daraus wurden obere Grenzen für verschiedene Modelle berechnet und der Beitrag von Kernkollaps-Supernovae zum diffusen Neutrinofluss eingeschränkt. Daraus können bestimmte Typen von Supernovae als dominate Quelle der diffusen hochenergetischen astrophysikalischen Neutrinos ausgeschlossen werden. / The recent discovery of a high energy flux of astrophysical neutrinos was one of the breakthroughs of the last years. However, the origin of these neutrinos remains still unknown. Also, the search for the sources of high-energy cosmic rays is closely connected to neutrinos since neutrinos are produced in hadronic interactions, and thus the detection of a neutrino source would be a \textit{smoking gun} signature for cosmic rays. Many potential neutrino source classes have been discussed, among these are core-collapse supernovae. In this thesis, seven years of data from the IceCube neutrino observatory are tested for correlation with the direction of hundreds of core-collapse supernovae. The analysis benefits from the good angular reconstruction of the order of one degree and below of the about 700000 muon track events and an extensive database of optical observations of supernovae. Using a time-dependent likelihood method, the sensitivity of the analysis is increased by stacking the sources in a combined analysis. No significant clustering of neutrino events around the position of core-collapse supernovae is found. Upper limits of different neutrino light curve models are computed, and the contribution of core-collapse supernovae to the measured diffuse high energetic neutrino background is constrained. These limits allow excluding certain types of core-collapse supernovae as the dominant source of the observed high energetic astrophysical neutrino flux.
9

Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs

Wechakama, Maneenate January 2013 (has links)
Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization. The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α < 1 if m_dm < 5 GeV, α < 1.3 if m_dm < 100 GeV and α < 1.5 if m_dm < 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^−26 cm^3 s^−1, as predicted for thermal relics from the big bang. / Trotz vieler Hinweise auf die Existenz von dunkler Materie durch astrophysikalische Beobachtungen hat sich die dunkle Materie bis heute einem direkten oder indirekten Nachweis entzogen. Daher gehrt der Nachweis ihrer Existenz und die Enthüllung ihrer Natur zu einem der faszinierensten Herausforderungen der heutigen Kosmologie und Teilchenphysik. Diese Arbeit versucht die Natur von dunkler Materie durch indirekte Signaturen von der Paarzerstrahlung dunkler Materie in Elektron-Positronpaare auf zwei verschiedene Weisen zu untersuchen, nämlich anhand des Drucks durch die Paarzerstrahlung dunkler Materie und durch Grenzen des Wirkungsquerschnitts für die Paarzerstrahlung dunkler Materie aus verschiedenen Beobachtungsbereichen. Wir konzentrieren uns dabei auf die Zerstrahlung dunkler Materie in Elektron-Positron-Paare und betrachten einen modellunabhängigen Fall, bei dem alle Elektronen und Positronen mit der gleichen Anfangsenergie E_0 ~ m_dm*c^2 injiziert werden. Die Fortbewegung dieser Teilchen wird dabei bestimmt durch die Lösung der Diffusions-Verlust-Gleichung unter Berücksichtigung von inverser Compton-Streuung, Synchrotronstrahlung, Coulomb-Streuung, Bremsstrahlung und Ionisation. Der erste Teil dieser Arbeit zeigt, dass die Zerstrahlung dunkler Materie in Elektron-Positron-Paare die gemessene Rotationskurve signifikant beeinflussen kann. Die Produktionsrate ist dabei durch Daten von INTEGRAL, Fermi und H.E.S.S. begrenzt. Der Druck des relativistischen Elektron-Positron Gases wird aus dem Energiespektrum errechnet, welches durch die Diffusions-Verlust-Gleichung bestimmt ist. Für Werte der Gasdichte und des magnetischen Feldes, welche für unsere Galaxie repräsentativ sind, lässt sich abschätzen, dass für E_0 < 1 GeV die Druckgradienten stark genug sind, um Gravitationskräfte auszugleichen. Die genauen Werte hängen von den verwendeten astrophysikalischen Parametern ab, und sie ändern sich stark mit dem Anstieg des dunklen Materie-Profils. Für sehr große Anstiege, wie sie für adiabatische Kontraktion erwartet werden, werden die Rotationskurven von Spiralgalaxien auf Skalen von einegen Kiloparsek für die meisten Werte von E_0 beeinflusst. Durch Vergleich der erwarteten Rotationskurven mit Beobachtungen von Zwerggalaxien und Galaxien geringer Oberflächentemperatur zeigen wir, dass der Druck von Zerstrahlung dunkler Materie die Übereinstimmung von Theorie und Beobachtung in einigen Fällen verbessern kann. Aber daraus resultieren auch starke Grenzen für die Modellparameter - vor allem für den inneren Anstieg des Halo-Dichteprofils, sowie die Masse und den Wirkungsquerschnitt der dunklen Materie-Teilchen. Im zweiten Teil werden obere Grenzen für die Wirkungsquerschnitte der Zerstrahlung der dunkler Materie in Elektron-Positron-Paare erhalten, indem die beobachteten Daten bei unterschiedlichen Wellenlängen (von Haslam, WMAP und Fermi) mit aktuellen Messungen von Elektron-Positron Spektren in der solaren Nachbarschaft durch PAMELA, Fermi und H.E.S.S. kombiniert werden. Wir betrachten Synchrotronemission bei Radiound Mikrowellenfrequenzen, sowie inverse Compton-Streuung und Final-State-Strahlung bei Energien im Bereich der Gamma-Strahlung. Für die meisten Werte der Modellparameter werden die stärksten Schranken durch das lokale Positron-Spektrum und die Synchrotronemission im Zentrum unser Galaxie bestimmt. Nach diesen Ergebnissen sollte der Wirkungsquerschnitt für die Paarzerstrahlung nicht größer als der kanonische Wert für thermische Relikte sein, wenn die Masse der dunklen Materie-Kandidaten kleiner als einige GeV ist. Zusätzlich leiten wir eine obere Grenze für den inneren logarithmische Anstieg α des Dichteprofiles des dunklen Materie Halos unserer Galaxie ab.
10

A Search for Extended Gamma-Ray Emission from the Galactic Center with VERITAS

Kelley-Hoskins, Nathan 07 May 2020 (has links)
Dunkle Materie bindet etwa 24 % der gesamten Energie im Universum. Bis heute ist jedoch dessen Ursprung nicht bekannt. Untersuchungen von Galaxien und kosmologischen Messungen deuten auf Dunkle Materie hin. Ein Kandidat für Dunkle Materie ist das sogenannte Weakly Interactive Massive Particle (WIMP), welches nur der Schwerkraft und der schwachen Wechselwirkung unterliegt. Eines dieser supersymmetrischen Teilchen ist das Neutralino. Das Ziel dieser Arbeit ist es, nach Dunkler Materie in dieser Form zu suchen. Aufgrund seiner Nähe sowie der hohen Dichte an Dunkler Materie bietet das Zentrum unserer Galaxie besondere Möglichkeiten zur Suche nach diesen Teilchen. Es wird vermutet, dass Neutralinos miteinander wechselwirken, dabei in Teilchen des Standard Modells zerfallen und so Photonen mit hohen Energien entstehen. Die Suche nach hochenergetischen Gammastrahlen in der Nähe des Galaktischen Zentrums kann folglich das Rätsel der Dunklen Materie lösen. Das Gammastrahlenobservatorium VERITAS hat das Galaktische Zentrum für etwa 108 Stunden beobachtet. Diese Daten wurden mittels einer unbinned Likelihood-Analyse auf die Existenz von Dunkler Materie untersucht. Da VERITAS das Galaktische Zentrum bei geringer Elevation beobachtet, können nur Gammastrahlen in einem Energiebereich zwischen 4 und 70 TeV detektiert werden. Die Analysemethode modelliert sowohl die räumliche Verteilung der Dunklen Materie als auch das Gammastrahlenspektrum. Der Beitrag der Gammastrahlen, welcher nicht von Dunkler Materie erzeugt wird, ist mittels einer punktförmigen Quelle modelliert. Zum Schluss wird der Untergrund mit realen Daten außerhalb des Galaktischen Zentrums abgeschätzt. Im Energiebereich zwischen 4 und 100 TeV wurden keine Signale der Dunklen Materie gefunden. Obere Grenzwerte für den Wechselwirkungsquerschnitt der WIMPs ergeben ⟨σv⟩ < (6.6 − 7.6) × 10−25 cm^3 oberhalb von 70 TeV in einem 95-prozentigen Erwartungsintervall. / Dark matter accounts for 24% of the universe’s energy, but the form in which it is stored is currently unknown. Understanding what form this matter takes is one of the major unsolved mysteries of modern physics. Much evidence exists for dark matter in the measurements of galaxies, dwarf galaxies, galaxy clusters, and cosmological measurements. One theory posits dark matter is a new undiscovered particle that only interacts via gravity and the weak force, called a weakly interacting massive particle (WIMP). One WIMP candidate is a supersymmetric particle called a neutralino. The objective of this thesis is to search for these dark matter particles, and attempt to measure their mass and cross section. Dark matter particles appear to concentrate in most galaxy-scale gravitational wells. One region of space that is both nearby and assumed to have a high density of dark matter is the center of our own galaxy. The neutralino is expected to annihilate into Standard Model particles, which may decay into photons. Therefore, a search for gamma rays near the Galactic Center may uncover the presence of dark matter. 108 hours of VERITAS gamma-ray observations of the Galactic Center are used in an unbinned likelihood analysis to search for dark matter. The Galactic Center’s low elevation results in VERITAS observing gamma rays in the 4–70 TeV energy range. The analysis used in this thesis consists of modeling the halo of dark matter at the Galactic Center, as well as the spectrum of gamma rays produced when two WIMPs annihilate. A point source is added to model the non-dark-matter gamma-ray emission detected from the Galactic Center. Background models are constructed from data of separate off-Galactic-Center observations. No dark matter signal is found in the 4–100 TeV mass range. Upper limits on the WIMP’s velocity-averaged cross section have been calculated, which above 70 TeV result in new limits of ⟨σv⟩ < (6.6 − 7.6) × 10−25 cm3 at the 95% confidence level.

Page generated in 0.0656 seconds