• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crab flare observations with H.E.S.S. phase II

Balzer, Arnim January 2014 (has links)
The H.E.S.S. array is a third generation Imaging Atmospheric Cherenkov Telescope (IACT) array. It is located in the Khomas Highland in Namibia, and measures very high energy (VHE) gamma-rays. In Phase I, the array started data taking in 2004 with its four identical 13 m telescopes. Since then, H.E.S.S. has emerged as the most successful IACT experiment to date. Among the almost 150 sources of VHE gamma-ray radiation found so far, even the oldest detection, the Crab Nebula, keeps surprising the scientific community with unexplained phenomena such as the recently discovered very energetic flares of high energy gamma-ray radiation. During its most recent flare, which was detected by the Fermi satellite in March 2013, the Crab Nebula was simultaneously observed with the H.E.S.S. array for six nights. The results of the observations will be discussed in detail during the course of this work. During the nights of the flare, the new 24 m × 32 m H.E.S.S. II telescope was still being commissioned, but participated in the data taking for one night. To be able to reconstruct and analyze the data of the H.E.S.S. Phase II array, the algorithms and software used by the H.E.S.S. Phase I array had to be adapted. The most prominent advanced shower reconstruction technique developed by de Naurois and Rolland, the template-based model analysis, compares real shower images taken by the Cherenkov telescope cameras with shower templates obtained using a semi-analytical model. To find the best fitting image, and, therefore, the relevant parameters that describe the air shower best, a pixel-wise log-likelihood fit is done. The adaptation of this advanced shower reconstruction technique to the heterogeneous H.E.S.S. Phase II array for stereo events (i.e. air showers seen by at least two telescopes of any kind), its performance using MonteCarlo simulations as well as its application to real data will be described. / Das H.E.S.S. Experiment misst sehr hochenergetische Gammastrahlung im Khomas Hochland von Namibia. Es ist ein sogenanntes abbildendes atmosphärisches Cherenkov-Teleskopsystem welches in der 1. Phase, die im Jahr 2004 mit der Datennahme begann, aus vier identischen 13 m Spiegelteleskopen bestand. Seitdem hat sich H.E.S.S. als das erfolgreichstes Experiment in der bodengebundenen Gammastrahlungsastronomie etabliert. Selbst die älteste der mittlerweile fast 150 entdeckten Quellen von sehr hochenergetischer Gammastrahlung, der Krebsnebel, fasziniert immernoch Wissenschaftler mit neuen bisher unbekannten und unerwarteten Phänomenen. Ein Beispiel dafür sind die vor kurzem entdeckten sehr energiereichen Ausbrüche von hochenergetischer Gammastrahlung. Bei dem letzten deratigen Ausbruch des Krebsnebels im März 2013 hat das H.E.S.S. Experiment für sechs Nächte simultan mit dem Fermi-Satelliten, welcher den Ausbruch entdeckte, Daten genommen. Die Analyse der Daten, deren Ergebnis und deren Interpretation werden im Detail in dieser Arbeit vorgestellt. Während dieser Beobachtungen befand sich ein neues 24 m × 32 m großes Spiegelteleskop, das H.E.S.S. II- Teleskop, noch in seiner Inbetriebnahme, trotzdem hat es für eine dieser sechs Nächte an der Datennahme des gesamten Teleskopsystems teilgenommen. Um die Daten rekonstruieren und analysieren zu können, mussten die für die 1. Phase des Experiments entwickelten Algorithmen und die Software des H.E.S.S.- Experiments angepasst werden. Die fortschrittlichste Schauerrekonstruktionsmethode, welche von de Naurois und Rolland entwickelt wurde, basiert auf dem Vergleich von echten Schauerbildern, die mit Hilfe der Cherenkov-Kameras der einzelnen Teleskope aufgenommen wurden, mit Schauerschablonen die mit Hilfe eines semianalytischen Modells erzeugt wurden. Das am besten passende Bild und damit auch alle relevanten Schauerparameter, wird mit Hilfe einer pixelweisen Loglikelihood-Anpassung ermittelt. Die nötigen Änderungen um Multiteleskopereignisse, welche vom heterogenen H.E.S.S. Phase II Detektor gemessen wurden, mit Hilfe dieser fortschrittlichen Schauerrekonstruktionsmethode analysieren zu können, sowie die resultierenden Ergebnisse von MonteCarlo-Simulationen, als auch die Anwendung auf echte Daten, werden im Rahmen dieser Arbeit präsentiert.
2

Photon reconstruction for the H.E.S.S. 28 m telescope and analysis of Crab Nebula and galactic centre observations

Holler, Markus January 2014 (has links)
In the presented thesis, the most advanced photon reconstruction technique of ground-based γ-ray astronomy is adapted to the H.E.S.S. 28 m telescope. The method is based on a semi-analytical model of electromagnetic particle showers in the atmosphere. The properties of cosmic γ-rays are reconstructed by comparing the camera image of the telescope with the Cherenkov emission that is expected from the shower model. To suppress the dominant background from charged cosmic rays, events are selected based on several criteria. The performance of the analysis is evaluated with simulated events. The method is then applied to two sources that are known to emit γ-rays. The first of these is the Crab Nebula, the standard candle of ground-based γ-ray astronomy. The results of this source confirm the expected performance of the reconstruction method, where the much lower energy threshold compared to H.E.S.S. I is of particular importance. A second analysis is performed on the region around the Galactic Centre. The analysis results emphasise the capabilities of the new telescope to measure γ-rays in an energy range that is interesting for both theoretical and experimental astrophysics. The presented analysis features the lowest energy threshold that has ever been reached in ground-based γ-ray astronomy, opening a new window to the precise measurement of the physical properties of time-variable sources at energies of several tens of GeV. / In der vorliegenden Dissertation wird die zur Zeit sensitivste Methode zur Photonrekonstruktion in der bodengebundenen Gammastrahlungsastronomie an das 28 m H.E.S.S. Teleskop angepasst. Die Analyse basiert auf einem semi-analytischen Modell von elektromagnetischen Teilchenschauern in der Erdatmosphäre. Die Rekonstruktion erfolgt durch den Vergleich des Bildes der Teleskopkamera mit der Tscherenkow-Emission, die mittels des Schauermodells berechnet wurde. Zur Verringerung des dominanten Untergrundes, der hauptsächlich durch Teilchen der geladenen kosmischen Strahlung hervorgerufen wird, werden Ereignisse anhand bestimmter Kriterien ausgewählt. Die Leistungsfähigkeit der Analyse wird unter Verwendung simulierter Ereignisse evaluiert. Die Methode wird anschließend auf zwei Gammastrahlungsquellen angewendet. Zuerst wird der Krebsnebel analysiert, die Standardkerze der bodengebundenen Gammastrahlungsastronomie. Die Resultate der Analyse des Krebsnebels bestätigen die bereits zuvor erwartete Leistungsfähigkeit der Rekonstruktionsmethode, wobei hier insbesondere die im Vergleich zu H.E.S.S. I stark verringerte Energieschwelle hervorzuheben ist. Als Zweites werden Beobachtungen der Region um das galaktische Zentrum ausgewertet. Die Analyseergebnisse dieser Daten unterstreichen die Fähigkeiten des neuen Teleskops zur Messung kosmischer Gammastrahlung in einem für die theoretische und experimentelle Astrophysik interessanten Energiebereich. Die vorgestellte Analyse besitzt die niedrigste Energieschwelle, die in der bodengebundenen Gammastrahlungsastronomie je erreicht wurde. Sie ermöglicht damit präzise Messungen der physikalischen Eigenschaften von zeitabhängigen Quellen im Energiebereich von 10 bis 100 GeV.
3

VHE Gamma-ray sources at the resolution limit of H.E.S.S

Stycz, Kornelia 25 May 2016 (has links)
Die bodengebundene Gammaastronomie beschäftigt sich mit der Detektion von Photonen mit Energien >10GeV mittels der abbildenden Cherenkov-Technik. Dabei wird die Atmosphäre als Detektor verwendet: Photonen in diesem Energiebereich produzieren in ihr Teilchenschauer, die Cherenkov-Licht aussenden. Das Licht wird von Teleskopen gesammelt um Abbildungen der Schauer zu erhalten, aus denen Eigenschaften der Gammaquanten abgeleitet werden können. Da die Schauer statistischen Prozessen unterliegen, ist die Rekonstruktion der Richtung des Gammaquants durch Fluktuationen begrenzt. Die Qualität der Rekonstruktion hängt von der Energie des Quants, Beobachtungsbedingungen, Teleskop-Eigenschaften und der Rekonstruktionsmethode ab. Die Präzision der Richtungsrekonstruktion einzelner Gammaquanten wird als Winkelauflösung bezeichnet. Diese Arbeit beschäftigt sich mit der Winkelauflösung der vier Teleskope von HESS, die für bodengebundene Gammaastronomie im Energiebereich >100GeV verwendet werden. Es werden systematische Fehler der Winkelauflösungsfunktion und ihre Abhängigkeiten von Beobachtungsparametern mit Beobachtungsdaten und Simulationen abgeschätzt. Abweichungen der simulierten Auflösung von der mit HESS an Hand von Punktquellen gemessenen werden in dieser Arbeit identifiziert und quantifiziert, um mit einer korrigierten Funktion zwei Phänomene zu studieren: Erstens wird die Ausdehnung des Krebsnebels im TeV-Bereich untersucht, für die Werte bis ca. 0.03º vorausgesagt werden. Es werden die Beobachtungen des Nebels selektiert, die eine gute Auflösung und Kontrolle des systematischen Fehlers versprechen. Auf einem Konfidenzniveau von 95% wird die Obergrenze der Ausdehnung des Nebels damit zu 0.034º bestimmt. Zweitens wird nach ausgedehnter Emission um Aktive Galaxienkerne (AGN) gesucht. Verschiedene Modell-Vorhersagen werden mit den HESS-Daten dreier AGN verglichen - die so erzielten Obergrenzen auf den Fluss sind die niedrigsten bisher veröffentlichten im TeV-Bereich. / Very-high-energy (VHE) gamma-ray astronomy deals with the ground-based detection of photons with energies of tens of GeV to few 100 TeV by employing the Imaging Air Cherenkov Technique (IACT). This method uses the atmosphere as a detector for VHE gamma-rays, exploiting that photons in that energy range produce particle showers in it. The showers emit Cherenkov light, which is collected by telescopes to image single showers. Properties of the gamma-rays can be deduced from the shower images. However, the interactions in the atmosphere are statistical processes, imposing a limit on the direction reconstruction. The quality of the reconstruction depends on the energy of the primary particle, telescope properties, observational conditions and reconstruction algorithm. The precision of the direction reconstruction of single photons is called the angular resolution. In this work, the angular resolution function of the IACT experiment HESS is studied in detail. HESS consists of five telescopes, four of which were built for the energy range >100 GeV. For this sub-array, the systematic errors on the angular resolution and their dependence on observation parameters are estimated from known point sources in HESS data and Monte-Carlo simulations. A mismatch between HESS data and simulations is quantified and corrected to assess two phenomena: First, the size of the the Crab Nebula at VHE is investigated. Some models predict a size of the emission region of more than 0.03º. Including a detailed accounting of the systematic errors, an upper limit on the size of emission region of the nebula is given by 0.034º at a 95% confidence level. Second, extended emission around Active Galactiv Nuclei is searched for. Various models are probed with HESS data and the most constraining upper limits on the so-called pair halo scenario are found. Assuming a different model, extra-galactic magnetic field strengths in the range of (0.1 - 10)* 10^{-15} G are excluded at a 99% confidence level.
4

Measurement of the iron spectrum in cosmic rays with the VERITAS experiment

Fleischhack, Henrike 25 January 2017 (has links)
Das Energiespektrum der kosmischen Strahlung bietet wichtige Hinweise auf ihren Ursprung und ihre Ausbreitung. Verschiedene Messtechniken müssen kombiniert werden, um den ganzen Energiebereich abdecken zu können: Direkte Messungen mit Teilchendetektoren bei niedrigen Energien sowie indirekte Messungen von Luftschauern bei hohen Energien. Dazu kommt die Messung von Photonen, hauptsächlich im GeV- und TeV-Bereich, die bei der Wechselwirkung von kosmischer Strahlung mit Materie oder elektromagnetischen Feldern entstehen. Im Folgenden werde ich zwei Studien dazu vorstellen, die beide auf Daten des abbildenden Tscherenkow-Teleskopes VERITAS beruhen. Erstens stelle ich eine Messung das Energiespektrums von Eisenkernen in der kosmischen Strahlung vor. Für die Bestimmung der Energie und Ankunftsrichtung der Primärteilchen benutze ich eine neuartige Template-Likelihood-Methode, die hier erstmals auf Eisenschauer angewendet wird. Zur Identifizierung der Eisenschauer benutze ich unter anderem das sogenannte direkte Tscherenkow-Licht, welches von geladenen Teilchen vor der ersten Wechselwirkung ausgestrahlt wird. Dazu kommt eine multivariate Klassifizierungsmethode, um den Verbleibenden Untergrund zu charakterisieren. Das so gemessene Energiespektrum von Eisen wird im Bereich von 20 TeV bis 500 TeV gut durch ein Potenzgesetz beschrieben. Zweitens beschreibe ich eine Suche nach Gammastrahlung oberhalb von 100 GeV von den drei Galaxien Arp 220, IRAS 17208-0014 und IC 342. Diese drei Galaxien haben hohe Sternentstehungsraten und daher viele Supernova-Überreste, welche kosmische Strahlung erzeugen. Diese wechselwirkt erwartungshalber mit den dichten Staubwolken in den Sternentstehungsgebieten und erzeugt Gammastrahlung. VERITAS konnte keine solche Gammastrahlung messen. Die daraus abgeleitete Höchstgrenze für die Luminosität schränkt theoretische Modelle der Erzeugung und Propagation von kosmischer Strahlung in der Galaxie Arp 220 ein. / The energy spectrum of cosmic rays can provide important clues as to their origin and propagation. Different experimental techniques have to be combined to cover the full energy range: Direct detection experiments at lower energies and indirect detection via air showers at higher energies. In addition to detecting cosmic rays at Earth, we can also study them via the electromagnetic radiation, in particular gamma rays, that they emit in interactions with gas, dust, and electromagnetic fields near the acceleration regions or in interstellar space. In the following I will present two studies, both using data taken by the imaging air Cherenkov telescope (IACT) VERITAS. First, I present a measurement of the cosmic ray iron energy spectrum. I use a novel template likelihood method to reconstruct the primary energy and arrival direction, which is for the first time adapted for the use with iron-induced showers. I further use the presence of direct Cherenkov light emitted by charged primary particles before the first interaction to identify iron-induced showers, and a multi-variate classifier to measure the remaining background contribution. The energy spectrum of iron nuclei is well described by a power law in the energy range of 20 to 500 TeV. Second, I present a search for gamma-ray emission above 100 GeV from the three star-forming galaxies Arp 220, IRAS 17208-0014, and IC342. Galaxies with high star formation rates contain many young and middle-aged supernova remnants, which accelerate cosmic rays. These cosmic rays are expected to interact with the dense interstellar medium in the star-forming regions to emit gamma-ray photons up to very high energies. No gamma-ray emission is detected from the studied objects and the resulting limits begin to constrain theoretical models of the cosmic ray acceleration and propagation in Arp 220.
5

Monoscopic Analysis of H.E.S.S. Phase II Data on PSR B1259–63/LS 2883

Murach, Thomas 20 October 2017 (has links)
Cherenkov-Teleskope sind in der Lage, das schwache Cherenkovlicht aus Teilchenschauern zu detektieren, die von kosmischen Teilchen mit Energien von ca. 100 GeV bis 100 TeV in der Erdatmosphäre initiiert werden. Das Ziel ist die Detektion von Cherenkovlicht aus Schauern, die von Gammastrahlen erzeugt wurden, der größte Teil der Schauer stammt jedoch von geladenen Teilchen. Im Jahr 2012 wurde das H.E.S.S.-Observatorium in Namibia, bis dahin bestehend aus vier Teleskopen mit 100 m²-Spiegeln, um ein fünftes Teleskop mit einer Spiegelfläche von ca. 600 m² ergänzt. Aufgrund der großen Spiegelfläche besitzt dieses Teleskop die niedrigste Energieschwelle aller Teleskope dieser Art. In dieser Dissertation wird ein schneller Algorithmus namens MonoReco präsentiert, der grundlegende Eigenschaften der Gammastrahlen wie ihre Energien und Richtungen rekonstruieren kann. Dieser Algorithmus kann weiterhin unterscheiden, ob Schauer von Gammastrahlen oder von geladenen Teilchen der kosmischen Strahlung initiiert wurden. Diese Aufgaben werden mit mithilfe von künstlichen neuronalen Netzwerken erfüllt, welche ausschließlich die Momente der Intensitätsverteilungen in der Kamera des neuen Teleskops analysieren. Eine Energieschwelle von 59 GeV und Richtungsauflösungen von 0.1°-0.3° werden erreicht. Das Energiebias liegt bei wenigen Prozent, die Energieauflösung bei 20-30%. Unter anderem mit dem MonoReco-Algorithmus wurden Daten, die in der Zeit um das Periastron des Binärsystems PSR B1259-63/LS 2883 im Jahre 2014 genommen wurden, analysiert. Es handelt sich hierbei um einen Neutronenstern, der sich in einem 3,4-Jahres-Orbit um einen massereichen Stern mit einer den Stern umgebenden Scheibe aus Gas und Plasmen befindet. Zum ersten Mal konnte H.E.S.S. das Gammastrahlenspektrum dieses Systems bei Energien unterhalb von 200 GeV messen. Weiterhin wurde bei erstmaligen Beobachtungen zur Zeit des Periastrons ein lokales Flussminimum gemessen. Sowohl vor dem ersten als auch nach dem zweiten Transit des Neutronensterns durch die Scheibe wurden hohe Flüsse gemessen. Im zweiten Fall wurden Beobachtungen erstmals zeitgleich mit dem Fermi-LAT-Experiment durchgeführt, das wiederholt sehr hohe Flüsse in diesem Teil des Orbits messen konnte. Ein Vergleich der gemessenen Flüsse mit Vorhersagen eines leptonischen Modells zeigt gute Übereinstimmungen. / Cherenkov telescopes can detect the faint Cherenkov light emitted by air showers that were initiated by cosmic particles with energies between approximately 100 GeV and 100 TeV in the Earth's atmosphere. Aiming for the detection of Cherenkov light emitted by gamma ray-initiated air showers, the vast majority of all detected showers are initiated by charged cosmic rays. In 2012 the H.E.S.S. observatory, until then comprising four telescopes with 100 m² mirrors each, was extended by adding a much larger fifth telescope with a very large mirror area of 600 m². Due to the large mirror area, this telescope has the lowest energy threshold of all telescopes of this kind. In this dissertation, a fast algorithm called MonoReco is presented that can reconstruct fundamental properties of the primary gamma rays like their direction or their energy. Furthermore, this algorithm can distinguish between air showers initiated either by gamma rays or by charged cosmic rays. Those tasks are accomplished with the help of artificial neural networks, which analyse moments of the intensity distributions in the camera of the new telescope exclusively. The energy threshold is 59 GeV and angular resolutions of 0.1°-0.3° are achieved. The energy reconstruction bias is at the level of a few percent, the energy resolution is at the level of 20-30%. Data taken around the 2014 periastron passage of the gamma-ray binary PSR B1259-63/LS 2883 were analysed with, among others, the MonoReco algorithm. This binary system comprises a neutron star in a 3.4 year orbit around a massive star with a circumstellar disk consisting of gas and plasma. For the first time the gamma-ray spectrum of this system could be measured by H.E.S.S. down to below 200 GeV. Furthermore, a local flux minimum could be measured during unprecedented measurements at the time of periastron. High fluxes were measured both before the first and after the second transit of the neutron star through the disk. In the second case measurements could be performed for the first time contemporaneously with the Fermi-LAT experiment, which has repeatedly detected very high fluxes at this part of the orbit. A good agreement between measured fluxes and predictions of a leptonic model is found.

Page generated in 0.2288 seconds