Return to search

Le développement des champignons pathogènes foliaires répond à la température, mais à quelle température ? / The development of a foliar fungal pathogen does react to temperature, but to which temperature ?

La température est un des principaux facteurs climatiques pilotant le développement des champignons pathogènes foliaires pendant les différentes étapes de leur cycle parasitaire. Puisque ces microorganismes se développent à la surface, puis à l’intérieur des feuilles, c’est la température de feuille (« body temperature » en écologie) qui pilote leur développement. En épidémiologie végétale, c’est toutefois la température d’air qui est utilisée pour caractériser l’effet de la température sur le développement des agents pathogènes foliaires. Or, la température de feuille peut différer significativement de la température d’air en fonction des conditions climatiques. La prise en compte de la température d’air pour étudier la dynamique des maladies foliaires ne peut donc s’affranchir de deux biais : la température mesurée n’est pas celle qui est réellement perçue par l’agent pathogène et l’hétérogénéité spatiale des températures au sein du peuplement n’est pas prise en compte. De plus, la relation entre la température et le développement des agents pathogènes est non linéaire, ce qui limite la gamme de validité autorisant l’utilisation des sommes de températures, pourtant largement employées en protestion des cultures. L’objectif général de cette thèse est de reconsidérer la prise en compte de la température pour l’étude du développement des champignons pathogènes foliaires.Le pathosystème blé-Mycosphaerella graminicola a été choisi en tant qu’objet d’étude. La stratégie adoptée pour atteindre les objectifs de la thèse combine deux approches complémentaires, l’expérimentation et la modélisation. Pour la première fois, la loi de réponse d’un agent pathogène foliaire à la température de feuille a été établie. Un dispositif expérimental innovant a permis d’établir la loi de réponse pour trois isolats sur une large gamme de températures foliaires, via la mesure en continu de la température de 191 feuilles (F et F) inoculées et l’utilisation d’un système de forçage thermique par lampe infrarouge. La loi de réponse de la période de latence de la septoriose à la température de feuille s’apparente au concept de courbe de performance thermique développé en écologie. Celle-ci étant non linéaire sur l’ensemble de la gamme de température étudiée, l’impact de l’amplitude de fluctuations de température de feuille a été caractérisé. Une amplitude élévée a conduit à plusieurs effets négatifs pour le développement de M. graminicola : l’augmentation de la durée du cycle de l’agent pathogène, la diminution de la surface sporulante des lésions et de la densité de pycnides. Les différences de cinétique de développement en fonction de l’amplitude des fluctuations ne sont que partiellement expliquées par l’effet Kaufmann (purement mathématiques), suggérant que M. graminicola atténue les conséquences négatives d’amplitudes de fluctuation plus élevées. Enfin, les simulations du développement de la septoriose réalisées à partir de données de températures foliaires diffèrent signicativement de celles réalisées à partir de températures d’air mesurées de façon standard par une station météorologique. Ces simulations ont également souligné le caractère déterminant du pas de temps considéré.Par le transfert de concepts d’écologie vers l’épidémiologie, cette thèse ouvre des pistes pour améliorer la prise en compte de la température dans les modèles épidémiologiques. Elle contribue au développement d’une meilleure compréhension des mécanismes par lesquels l’environnement affecte les microorganismes, point clé pour le développement de modèles mécanistes de réponses possibles au changement climatique / Temperature is a major force for the development of foliar fungal pathogens. Such organisms develop onto and into leaves during their growth cycle. Thus, leaf temperature is the temperature they actually perceive (“body temperature”). However, air temperature has always been used by plant pathologists to study the effect of temperature on the development of foliar fungal pathogens. Leaf temperature may significantly differ from the air temperature according to weather conditions. Therefore, considering the air temperature to study foliar pathogens can potentially cause two biases: the measured temperature is not the temperature such pathogens actually perceive and the spatial heterogeneity of leaf temperatures within the plant canopy is ignored. In addition, the relationship between temperature and the development of foliar pathogens is nonlinear. This challenges the immoderate use of degree-day sums in plant disease epidemiology. The main objective of this thesis is to reconsider the use of temperature for the study of the development of foliar fungal pathogens.The wheat-Mycosphaerella graminicola pathosystem was chosen as the model of study. The strategy to achieve the objectives of the thesis combines two complementary approaches: experimentation and modelling. For the first time, the impact of leaf temperature on the development of a leaf pathogen was characterized. An original experimental device allowed determining the response law for three isolates over a wide range of leaf temperature, using thermal infrared lamps and measuring continuously the temperature of 191 inoculated leaves (F1 and F2). The response law of M. graminicola latent period to leaf temperature is similar to the concept of thermal performance curve (TPC) developed in ecology. As this TPC is non-linear over the entire leaf temperature range investigated, the impact of the amplitude of leaf temperature fluctuations has been characterized. A high amplitude led to several negative effects on M. graminicola development: an increase in the duration of the pathogen cycle, a decrease in the final sporulating area in the pycnidium density. Differences in kinetics of development depending on the amplitude of the fluctuations were only partially explained by the Kaufmann effect (purely mathematical), suggesting that M. graminicola mitigates the negative consequences of higher amplitudes of temperatures fluctuation. Finally, simulations of the development of M. graminicola performed using leaf temperature data differed significantly from those performed using air temperatures measured in a standard way, by a weather station. Simulations also underlined the importance of the time step considered. By transferring concepts from ecology to epidemiology, this thesis provided guidelines to better take into account temperature in epidemiological models. It helped to develop a better understanding of the mechanisms by which the environment affects micoorganisms, the cornerstone for the development of mechanistic models of possible responses to climate change.

Identiferoai:union.ndltd.org:theses.fr/2012AGPT0085
Date10 December 2012
CreatorsBernard, Frédéric
ContributorsParis, AgroParisTech, Chelle, Michaël
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds