Return to search

Modèles graphiques pour la classification et les séries temporelles / Graphical models for classification and time series

Dans cette thèse nous nous intéressons aux méthodes de classifications supervisées utilisant les réseaux bayésiens. L'avantage majeur de ces méthodes est qu'elles peuvent prendre en compte les interactions entre les variables explicatives. Dans une première partie nous proposons une procédure de discrétisation spécifique et une procédure de sélection de variables qui permettent d'améliorer considérablement les classifieurs basés sur des réseaux bayésiens. Cette procédure a montré de très bonnes performances empiriques sur un grand choix de jeux de données connus de l’entrepôt d'apprentissage automatique (UCI Machine Learning repository). Une application pour la prévision de type d’épilepsie à partir de de caractéristiques des patients extraites des images de Tomographie par émission de positrons (TEP) confirme l’efficacité de notre approche comparé à des approches communes de classifications supervisées. Dans la deuxième partie de cette thèse nous nous intéressons à la modélisation des interactions entre des variables dans le contexte de séries chronologiques en grande dimension. Nous avons proposé deux nouvelles approches. La première, similaire à la technique "neighborhood Lasso" remplace la technique Lasso par des machines à vecteurs de supports. La deuxième approche est un réseau bayésien restreint: les variables observées à chaque instant et à l’instant précédent sont utilisées dans un réseau dont la structure est restreinte. Nous montrons l’efficacité de ces approches par des simulations utilisant des donnés simulées issues de modèles linéaires, non-linéaires et un mélange des deux. / First, in this dissertation, we will show that Bayesian networks classifiers are very accurate models when compared to other classical machine learning methods. Discretising input variables often increase the performance of Bayesian networks classifiers, as does a feature selection procedure. Different types of Bayesian networks may be used for supervised classification. We combine such approaches together with feature selection and discretisation to show that such a combination gives rise to powerful classifiers. A large choice of data sets from the UCI machine learning repository are used in our experiments, and the application to Epilepsy type prediction based on PET scan data confirms the efficiency of our approach. Second, in this dissertation we also consider modelling interaction between a set of variables in the context of time series and high dimension. We suggest two approaches; the first is similar to the neighbourhood lasso where the lasso model is replaced by Support Vector Machines (SVMs); the second is a restricted Bayesian network for time series. We demonstrate the efficiency of our approaches simulations using linear and nonlinear data set and a mixture of both.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0248
Date28 September 2017
CreatorsJebreen, Kamel
ContributorsAix-Marseille, Ghattas, Badih
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds