L'objectif de ce travail de thèse, réalisé dans le cadre de la Chaire Industrielle Bioplastiques financée par Mines ParisTech et Arkema, l'Oreal, Nestle, PSA et Schneider Electric, est de fournir une étude systématique sur les relations entre les conditions opératoires du procédé de compoundage et la structure de biocomposites polypropylène/fibres lin et Tencel®. En particulier, le comportement et la rupture des fibres ont été étudiés de manière détaillée pendant la mise en œuvre à l'état fondu en mélangeur interne et par extrusion bivis.Les fibres ont été observées in-situ en écoulement dans la matrice grâce à un système rhéo-optique. Ainsi, il a été montré que la décohésion des faisceaux de lin est facilitée par un rapport de forme initial plus grand. La fragmentation des fibres résulte d'un phénomène de fatigue et est provoquée par l'accumulation des déformations et de l'énergie mécanique. Au niveau de leur point de rupture, les fibres de lin et de Tencel® se déchirent et fibrillent, alors que les fibres élémentaires de lin cassent près de leurs " genoux ". Des analyses de distributions de tailles des fibres après compoundage avec la matrice ont corroboré les observations rhéo-optiques. Lorsque les conditions de mélange sont sévères, chaque " genou " devient un point de rupture et la longueur finale des fibres de lin se retrouve être égale à la longueur moyenne entre les " genoux ". Les faisceaux de lin initialement plus courts ne se dissocient et ne se fragmentent que très peu. La rupture des fibres de lin est différente en fonction de leur taille initiale et ces fibres ne conduisent pas au même comportement rhéologique pour les composites. En revanche, pour les fibres unitaires Tencel®, la taille initiale n'a que très peu d'influence sur leurs dimensions finales, à condition que les fibres ne soient pas trop longues et trop difficiles à disperser. Le temps de mélange est apparu déterminant pour préserver le rapport de forme des fibres. La déformation cumulée s'est révélée être un meilleur paramètre que l'énergie mécanique spécifique pour décrire à la fois la rupture des fibres de lin et de Tencel®. Les propriétés mécaniques en traction uniaxiale ont enfin été caractérisées et mises en relation avec les conditions de mélange et les dimensions finales des fibres.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00982245 |
Date | 20 December 2013 |
Creators | Le Duc, Anne |
Publisher | Ecole Nationale Supérieure des Mines de Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds