Return to search

Modeling and Control of Tensegrity-Membrane Systems

Tensegrity-membrane systems are a class of new bar-tendon-membrane systems. Such novel systems can be treated as extensions of tensegrity structures and are generally lightweight and deployable. These two major advantages enable tensegrity-membrane systems to become one of the most promising candidates for lightweight space structures and gossamer spacecraft.

In this dissertation, modeling and control of tensegrity-membrane systems is studied. A systematic method is developed to determine the equilibrium conditions of general tensegrity-membrane systems. Equilibrium conditions can be simplified when the systems are in symmetric configurations. For one-stage symmetric systems, analytical equilibrium conditions can be determined.

Three mathematical models are developed to study the dynamics of tensegrity-membrane systems. Two mathematical models are developed based on the nonlinear finite element method. The other model is a control-oriented model, which is suitable for control design. Numerical analysis is conducted using these three models to study the mechanical properties of tensegrity-membrane systems.

Two control strategies are developed to regulate the deployment process of tensegrity-membrane systems. The first control strategy is to deploy the system by a nonlinear adaptive controller and use a linear H∞ controller for rapid system stabilization. The second control strategy is to regulate the dynamics of tensegrity-membrane systems using a linear parameter-varying (LPV) controller during system deployment. A gridding method is employed to discretize the system operational region in order to carry out the LPV control synthesis. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71686
Date30 June 2016
CreatorsYang, Shu
ContributorsAerospace and Ocean Engineering, Sultan, Cornel, Woolsey, Craig A., Kapania, Rakesh K., Farhood, Mazen H.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds