The SRV test rig was used to evaluate the friction and wear properties of a lubricant in a laboratory setup. Normally, the coefficient of friction and the amount of wear that occurred are measured while the wear scar surface is also evaluated. Special attention was paid to factors that affect the repeatability.
The test fluid was subjected to a friction and wear test on the SRV test rig in order to determine what factors affect the repeatability of the coefficient of friction, the amount of wear that occurred and the wear scar appearance. The test fluid used was based on rapeseed oil and white mineral oil. The fluid also contained an extreme pressure additive in the form of sulphurised ester. This was also compared for the same test fluid with dispersed hexagonal-boron nitride (h-BN) nanoparticles.
The standard test method as described by ASTM D 6425, was used as test method. Instead of the standard temperature, the block temperature was increased to 100 °C in order to simulate harsher operating environments. The load was set at 200 N
It was found that:
The rapid load increase from 50 to 200 N at the end of the running-in period (as described in the standard test method) caused poor repeatability. The test was modified with a more gradual load application for the duration of the running-in period (30 N/min), which resulted in improvement in the repeatability of the tests conducted.
The moisture content in the atmosphere also affected the repeatability of the friction and wear tests. This was most likely due to the formation of a corrosion layer that involves water and by keeping the relative humidity constant, a further improvement in the repeatability was observed. The addition of the h-BN nanoparticles resulted in an improvement of the repeatability of the coefficient of friction (COF), wear scar surface (WSS) and wear scar volume (WSV), since the wear scar surfaces indicated that the particles remove the corrosion layers. This could have led to more consistent wear surfaces for the duration of the test.
The particles also influenced the corrosion layer formation. For both fluids, Raman spectroscopy indicated that greigite (Fe3S4) and goethite (α-FeOOH) were found on the surface, while additional corrosion products were found on the wear scar surface for the test fluid with dispersed particles. These compounds were melanterite (FeSO4.7H2O) and rozenite (FeSO4.4H2O). All these corrosion products were most likely formed due to the reaction of iron from the specimens with sulphurised esters in the test fluid. / Dissertation (MEng)--University of Pretoria, 2015. / tm2015 / Chemical Engineering / MEng / Unrestricted
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/46239 |
Date | January 2015 |
Creators | Benadé, Howard P. |
Contributors | De Vaal, Phillip L. |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Dissertation |
Rights | © 2015 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. |
Page generated in 0.0027 seconds