La thèse est composée de trois parties. La partie I introduit les outils mathématiques et statistiques appropriés pour l'étude des dépendances, ainsi que des tests statistiques d'adéquation pour des distributions de probabilité empiriques. Je propose deux extensions des tests usuels lorsque de la dépendance est présente dans les données, et lorsque la distribution des observations a des queues larges. Le contenu financier de la thèse commence à la partie II. J'y présente mes travaux concernant les dépendances transversales entre les séries chronologiques de rendements journaliers d'actions, c'est à dire les forces instantanées qui relient plusieurs actions entre elles et les fait se comporter collectivement plutôt qu'individuellement. Une calibration d'un nouveau modèle à facteurs est présentée ici, avec une comparaison à des mesures sur des données réelles. Finalement, la partie III étudie les dépendances temporelles dans des séries chronologiques individuelles, en utilisant les mêmes outils et mesures de corrélations. Nous proposons ici deux contributions à l'étude du " volatility clustering ", de son origine et de sa description: l'une est une généralisation du mécanisme de rétro-action ARCH dans lequel les rendements sont auto-excitants, et l'autre est une description plus originale des auto-dépendances en termes de copule. Cette dernière peut être formulée sans modèle et n'est pas spécifique aux données financières. En fait, je montre ici aussi comment les concepts de récurrences, records, répliques et temps d'attente, qui caractérisent la dynamique dans les séries chronologiques, peuvent être écrits dans la cadre unifié des copules.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01003349 |
Date | 27 June 2013 |
Creators | Chicheportiche, Rémy |
Publisher | Ecole Centrale Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds