Ion irradiation of tetrahedral amorphous carbon (ta-C) thin films induces a carbon phase transformation from the electrically insulating sp3 hybridization into the conducting sp2 hybridization. In this work, a detailed study on the electrical resistivity and the microstructure of areas, irradiated with several ion species at 30 keV energy is presented. Continuous ion bombardment yields a drastic drop of the resistivity as well as significant structural modifications of the evolving sp2 carbon phase. It is shown that the resistivity lowering can be attributed to the degree of graphitization in the film. Furthermore, the structural ordering processes are correlated with the ion deposited energy density. It is therefore revealed that the ion-induced phase transformation in ta-C films is a combination of sp3-to-sp2 conversion of carbon atoms and ion-induced ordering of the microstructure into a more graphite-like arrangement. All experiments were done with focused ion beam (FIB) systems by applying FIB lithography of electrical van-der-Pauw test structures. FIB lithography on ta-C layers is presented as a fast and easy technique for the preparation of electrically active micro- and nanostructures in an insulating carbon matrix.:Contents
List of Figures iii
List of Tables v
List of Abbreviations vii
1. Introduction 1
2. Fundamentals 5
2.1. Ion-solid interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1. Scattering and stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Ion range distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3. Target modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4. Thermal driven segregation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2. Focused ion beams (FIBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Commercial gallium FIB (Ga + -FIB) . . . . . . . . . . . . . . . . . . . . . 24
2.2.2. Mass-separated FIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3. Tetrahedral amorphous carbon (ta-C) . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1. Composition, microstructure and film properties . . . . . . . . . . . . . . 26
2.3.2. Growth mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3. Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3. Experimental 39
3.1. Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2. Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4. Ion induced surface swelling 43
4.1. Fluence and energy dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2. Calculations of the swelling height . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5. Electrical properties of irradiated ta-C 55
5.1. Electrical resistivity of as-implanted ta-C . . . . . . . . . . . . . . . . . . . . . . 55
5.1.1. Resistance of Ga + implanted micropatterns . . . . . . . . . . . . . . . . . 55
5.1.2. Sheet resistance of Ga + irradiated ta-C . . . . . . . . . . . . . . . . . . . 59
5.1.3. Determination of the sp 3 content . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.4. The effect of different ion species . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.5. Low temperature resistivity – The peculiarity of gallium . . . . . . . . . . 71
5.2. The effect of annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3. Irradiation at elevated substrate temperatures . . . . . . . . . . . . . . . . . . . . 79
6. The microstructure of irradiated ta-C 87
6.1. Raman investigations of ion irradiated ta-C . . . . . . . . . . . . . . . . . . . . . 88
6.1.1. Fundamentals of Raman spectroscopy on amorphous carbon . . . . . . . . 88
6.1.2. Raman spectra of as-implanted ta-C . . . . . . . . . . . . . . . . . . . . . 93
6.1.3. Thermally driven graphitization of the microstructure . . . . . . . . . . . 98ii Contents
6.1.4. The correlation between microstructure and resistivity . . . . . . . . . . . 101
6.2. TEM investigations of ion irradiated ta-C . . . . . . . . . . . . . . . . . . . . . . 104
7. FIB lithography on ta-C layers 107
7.1. Graphitic nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1.1. Nanowire dimensions – The resolution of FIB lithography . . . . . . . . . 108
7.1.2. Nanowire resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2. Electrical insulation between conducting structures . . . . . . . . . . . . . . . . . 113
8. Conclusions and Outlook 117
A. Gallium nanoparticles on ta-C layers 121
Bibliography 123
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27710 |
Date | 12 February 2014 |
Creators | Philipp, Peter |
Contributors | Faßbender, Jürgen, Bischoff, Lothar, Zahn, Wieland, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds