Return to search

ML enhanced interpretation of failed test result

This master thesis addresses the problem of classifying test failures in Ericsson AB’s BAIT test framework, specifically distinguishing between environment faults and product faults. The project aims to automate the initial defect classification process, reducing manual work and facilitating faster debugging. The significance of this problem lies in the potential time and cost savings it offers to Ericsson and other companies utilizing similar test frameworks. By automating the classification of test failures, developers can quickly identify the root cause of an issue and take appropriate action, leading to improved efficiency and productivity. To solve this problem, the thesis employs machine learning techniques. A dataset of test logs is utilized to evaluate the performance of six classification models: logistic regression, support vector machines, k-nearest neighbors, naive Bayes, decision trees, and XGBoost. Precision and macro F1 scores are used as evaluation metrics to assess the models’ performance. The results demonstrate that all models perform well in classifying test failures, achieving high precision values and macro F1 scores. The decision tree and XGBoost models exhibit perfect precision scores for product faults, while the naive Bayes model achieves the highest macro F1 score. These findings highlight the effectiveness of machine learning in accurately distinguishing between environment faults and product faults within the Bait framework. Developers and organizations can benefit from the automated defect classification system, reducing manual effort and expediting the debugging process. The successful application of machine learning in this context opens up opportunities for further research and development in automated defect classification algorithms. / Detta examensarbete tar upp problemet med att klassificera testfel i Ericsson AB:s BAIT-testramverk, där man specifikt skiljer mellan miljöfel och produktfel. Projektet syftar till att automatisera den initiala defekten klassificeringsprocessen, vilket minskar manuellt arbete och underlättar snabbare felsökning. Betydelsen av detta problem ligger i de potentiella tids- och kostnadsbesparingarna det erbjuder till Ericsson och andra företag som använder liknande testramar. Förbi automatisera klassificeringen av testfel, kan utvecklare snabbt identifiera grundorsaken till ett problem och vidta lämpliga åtgärder, vilket leder till förbättrad effektivitet och produktivitet. För att lösa detta problem använder avhandlingen maskininlärningstekniker. A datauppsättning av testloggar används för att utvärdera prestandan för sex klassificeringar modeller: logistisk regression, stödvektormaskiner, k-närmaste grannar, naiva Bayes, beslutsträd och XGBoost. Precision och makro F1 poäng används som utvärderingsmått för att bedöma modellernas prestanda. Resultaten visar att alla modeller presterar bra i klassificeringstest misslyckanden, uppnå höga precisionsvärden och makro F1-poäng. Beslutet tree- och XGBoost-modeller uppvisar perfekta precision-spoäng för produktfel, medan den naiva Bayes-modellen uppnår högsta makro F1-poäng. Dessa resultat belyser effektiviteten av maskininlärning när det gäller att exakt särskilja mellan miljöfel och produktfel inom Bait-ramverket. Utvecklare och organisationer kan dra nytta av den automatiska defektklassificeringen system, vilket minskar manuell ansträngning och påskyndar felsöknings-processen. De framgångsrik tillämpning av maskininlärning i detta sammanhang öppnar möjligheter för vidare forskning och utveckling inom automatiserade defektklassificeringsalgoritmer.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-338102
Date January 2023
CreatorsPechetti, Hiranmayi
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:707

Page generated in 0.0031 seconds