Nous présentons des résultats asymptotiques pour des systèmes monotones réparables, lorsque le nombre de composants est grand. On supposera que les composants sont indépendants, identiques, multi-états et markoviens. Les systèmes k-sur-n généralisés, pour lesquels le niveau k dépend de nombre n de composants, seront les principaux modèles étudiés. Nous montrerons un théorème central limite et une loi des grands nombres pour le premier instant de panne correspondant à un certain niveau k. Nous montrons également une loi du zéro-un pour la disponibilité d'une grande classe de systèmes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002101 |
Date | 06 December 2002 |
Creators | Paroissin, Christian |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds