Return to search

Lois de conservation et plongements isométriques généralisés

Ce travail de thèse se situe dans le domaine de la géométrie différentielle et a pour objectif l'étude du problème du plongement isométrique généralisé de fibrés vectoriels, dont la résolution permet, entre autres, de montrer l'existence d'analogues des lois de conservation en l'absence de symétries pour des équations aux dérivées partielles. Pour résoudre ce problème, nous le traduisons en termes d'un système différentiel extérieur, et l'existence ou non de variétés intégrales permet non seulement d'affirmer l'existence du plongement isométrique généralisé mais aussi de préciser la dimension de l'espace d'arrivé. En utilisant donc la théorie de Cartan-Kähler, nous résolvons le problème du plongement isométrique généralisé dans le cas des lois de conservations, i.e., lorsque la forme différentielle fermée covariante à valeurs dans le fibré est de degré un de moins que la dimension de la variété. Un corollaire de ce résultat est l'existence de lois de conservations pour le tenseur énergie-impulsion. Nous donnons aussi une réponse positive pour le plongement de 1-formes différentielles et pour le cas d'une 2-forme différentielle anti-auto-duale sur une variété de dimension 4 à valeurs dans un fibré de rang 3 muni d'une métrique et d'une connexion.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00427033
Date22 October 2009
CreatorsKahouadji, Nabil
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds