En développant des outils pour étudier les chaînes de Markov réversibles ainsi qu’une classification des arbres par leur constante de branchement, on pourra traiter du problème du retour à l’origine d’une marche aléatoire sur un arbre. Ces mêmes outils nous permettront d’étudier la percolation sur les arbres. En particulier, il sera possible de relier explicitement la constante de branchement d’un arbre à la valeur critique pour la marche aléatoire biaisée et à la valeur critique de percolation. Par la suite, on détaille comment en arriver à des bornes intéressantes pour deux valeurs critiques du processus de contact sur l’arbre homogène, un résultat de Pemantle. On généralise aussi un résultat de Schinazi qui nous permet de trouver une borne inférieure pour la valeur critique de survie du processus de contact sur le recouvrement universel d’un graphe fini.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25261 |
Date | 20 April 2018 |
Creators | Pelletier, Laurent |
Contributors | Bélisle, Claude |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (ix, 74 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0022 seconds