Un espace de Banach spectral p-adique est un espace de~Banach p-adique muni d'une algèbre de fonctions analytiques à valeurs dans un corps complet et algébriquement clos C. Un espace de Banach-Colmez est un espace de Banach spectral qui s'obtient par extensions et quotients à partir de C et Qp. Ces espaces forment une catégorie abélienne, qui est naturellement munie de fonctions additives « dimension » et « hauteur » ; on retrouve ainsi une démonstration du théorème « faiblement admissible implique admissible » (Colmez-Fontaine, 2000). De plus, il existe une sous-catégorie pleine qui admet une filtration canonique par les pentes de l'action du Frobenius, décroissante et indexée par les rationnels positifs.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00448628 |
Date | 29 September 2009 |
Creators | Plût, Jérôme |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds