Return to search

Stratification de Newton des variétés de Shimura et formule des traces d'Arthur-Selberg

Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places de bonne réduction. Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une relation entre la cohomologie l-adique de ce strate basique et la cohomologie de la variété de Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de points dans la strate basique sur des corps finis, en termes de représentations automorphes. Nous obtenons les résultats à l'aide de la formule des traces et de la troncature de la formule de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini. Nous montrons, en utilisant la formule des traces, que n'importe quelle strate de Newton d'une variété de Shimura de type PEL de type (A) est non vide en une place de bonne réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn; nous donnons une nouvelle preuve de ce théorème. Considérons la strate basique des variétés de Shimura associées à certains groupes unitaires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat d' équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent que des représentations automorphes cuspidales sur Gl_n pour lesquelles cette conjecture est connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence. En collaboration avec Erez Lapid nous calculons le module de Jacquet d'une représentation en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps local non-archimédien.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00802976
Date10 December 2012
CreatorsKret, Arno
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds