• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stratification de Newton des variétés de Shimura et formule des traces d’Arthur-Selberg / The Newton stratification of Shimura varieties and the Arthur-Selberg trace formula

Kret, Arno 10 December 2012 (has links)
Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places de bonne réduction. Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une relation entre la cohomologie l-adique de ce strate basique et la cohomologie de la variété de Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de points dans la strate basique sur des corps finis, en termes de représentations automorphes. Nous obtenons les résultats à l'aide de la formule des traces et de la troncature de la formule de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini. Nous montrons, en utilisant la formule des traces, que n'importe quelle strate de Newton d'une variété de Shimura de type PEL de type (A) est non vide en une place de bonne réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn; nous donnons une nouvelle preuve de ce théorème. Considérons la strate basique des variétés de Shimura associées à certains groupes unitaires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat d' équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent que des représentations automorphes cuspidales sur Gl_n pour lesquelles cette conjecture est connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence. En collaboration avec Erez Lapid nous calculons le module de Jacquet d'une représentation en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps local non-archimédien. / We study the Newton stratification of Shimura varieties of PEL type, at the places of good reduction. We consider the basic stratum of certain simple Shimura varieties of PEL type at a place of good reduction. Under simplifying hypotheses we prove a relation between the l-adic cohomology of this basic stratum and the cohomology of the complex Shimura variety. In particular we obtain explicit formulas for the number of points in the basic stratum over finite fields, in terms of automorphic representations. We obtain our results using the trace formula and truncation of the formula of Kottwitz for the number of points on a Shimura variety over a finite field. We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-type of type (A) is non-empty at a prime of good reduction. This result is already established by Viehmann-Wedhorn; we give a new proof of this theorem. We consider the basic stratum of Shimura varieties associated to certain unitary groups in cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke operators acting on the basic stratum. We relate the rate of convergence to the bounds from the Ramanujan conjecture of certain particular cuspidal automorphic representations on Gl_n. The Ramanujan conjecture turns out to be known for these automorphic representations, and therefore we obtain very sharp estimates on the rate of convergence. We prove that any connected reductive group G over a non-Archimedean local field has a cuspidal representation. Together with Erez Lapid we compute the Jacquet module of a Ladder representation at any standard parabolic subgroup of the general linear group over a non-Archimedean local field.
2

Points de Darmon et variétés de Shimura

Gartner, Jerome 11 January 2011 (has links) (PDF)
Cette thèse s'intéresse à la recherche de points rationnels sur les courbes elliptiques. Darmon et Logan ont proposé une construction conjecturale de points rationnels sur des courbes elliptiques modulaires définies sur un corps de nombres totalement réel. Cette construction va au delà de la construction classique des points de Heegner. C'est sur la généralisation de ces travaux que porte cette thèse. Après un premier chapitre de rappels concernant essentiellement les variétés de Shimura, on construit, dans le chapitre deux une forme différentielle dont l'ensemble des périodes est, sous une conjecture due à Yoshida, un réseau. On y définit aussi un ensemble de cycles dont la classe d'homologie est de torsion. A l'aide de ces données, on énonce au chapitre suivant une conjecture généralisant celle de Darmon et Logan. On s'interesse aussi aux propriétés de ces nouveaux points, principalement en lien avec les théorèmes "classiques" de Gross-Zagier et Gross-Kohnen-Zagier. Le chapitre 4 tente de rendre holomorphes les opérations du chapitre 2, et le chapitre 5 de les rendre plus explicites. Cette thèse comporte une annexe concernant les vérifications informatiques de la conjecture de Darmon.
3

Stratification de Newton des variétés de Shimura et formule des traces d'Arthur-Selberg

Kret, Arno 10 December 2012 (has links) (PDF)
Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places de bonne réduction. Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une relation entre la cohomologie l-adique de ce strate basique et la cohomologie de la variété de Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de points dans la strate basique sur des corps finis, en termes de représentations automorphes. Nous obtenons les résultats à l'aide de la formule des traces et de la troncature de la formule de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini. Nous montrons, en utilisant la formule des traces, que n'importe quelle strate de Newton d'une variété de Shimura de type PEL de type (A) est non vide en une place de bonne réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn; nous donnons une nouvelle preuve de ce théorème. Considérons la strate basique des variétés de Shimura associées à certains groupes unitaires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat d' équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent que des représentations automorphes cuspidales sur Gl_n pour lesquelles cette conjecture est connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence. En collaboration avec Erez Lapid nous calculons le module de Jacquet d'une représentation en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps local non-archimédien.
4

Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales / On some geometrical and arithmetical aspects of orthogonal Shimura varieties

Tayou, Salim 17 June 2019 (has links)
Cette thèse a pour objet l'étude de quelques propriétés arithmétiques et géométriques des variétés de Shimura orthogonales. Ces variétés apparaissent naturellement comme espaces de modules de structures de Hodge de type K3. Dans certains cas, elles paramètrent des objets géométriques tels que les surfaces K3 et leurs analogues en dimensions supérieures, les variétés hyperkähleriennes. Ce point de vue modulaire sera notre fil conducteur tout au long de ce mémoire. Ainsi, dans la première partie, on démontre un résultat d'équirépartition du lieu de Hodge dans les variations de structures de Hodge de type K3 au dessus d'une courbe complexe quasi-projective. Dans la deuxième partie, on étudie des analogues arithmétiques du résultat précédent. Un exemple d'énoncés qu'on obtient est le suivant: étant donnée une surface K3 définie sur un corps de nombres et ayant partout bonne réduction, alors sous certaine hypothèse d'approximation, il existe une spécialisation telle que le nombre de Picard géométrique croît strictement. Dans la troisième partie, on relie les problèmes du saut de nombre de Picard dans les familles de surfaces K3 à la question de construction de courbes rationnelles sur ces surfaces. Enfin, on étend un résultat de Bogomolov et Tschinkel. On montre notamment que toute surface K3 définie sur un corps algébriquement clos de caractéristique quelconque et admettant une fibration elliptique non-isotriviale contient une infinité de courbes rationnelles. / This thesis deals with some arithmetical and geometrical aspects of orthogonal Shimura varieties. These varieties appear naturally as moduli spaces of Hodge structures of K3 type. In some cases, they parametrize geometric objects as K3 surfaces and their analogous in higher dimensions, the hyperkähler varieties. This modular point of view will be our guiding principle throughout this dissertation. In the first part, we prove an equidistribution result of the Hodge locus in variations of Hodge structures of K3 type above complex quasi-projective curves. In the second part, we study analogous results in the arithemtic setting. An example of statements we get is the following: given a K3 surface having everywhere good reduction and satisfying an approximation hypothesis, there exists a specialization with strictly increasing geometric Picard rank. In both cases, our methods take advantage of the rich arithmetic, automorphic and geometric structure of orthogonal Shimura varieties as well as the Kuga-Satake construction that links them to moduli spaces of abelian varieties. Finally, we extend a result of Bogomolov and Tschinkel. In particular, we show that any K3 surface defined over an algebraically closed field of arbitrary characteristic and admitting a non-isotrivial elliptic fibration contains infinitely many rational curves.
5

Sur quelques questions d'équidistribution en géométrie arithmétique

Richard, Rodolphe 19 November 2009 (has links) (PDF)
Nous démontrons un résultat d'équidistribution sur les courbes modulaires: les orbites galoisiennes d'invariants modulaires a l'intérieur d'une même classe d'isogénie non~CM se répartissent le long de la mesure de Poincaré sur la courbe modulaire. Un corollaire est que la hauteur des points considérés diverge, retrouvant là un résultat de Szpiro et Ullmo. Pour obtenir cet énoncé nous combinons des propriétés galoisiennes (le théorème de Serre sur l'action du groupe de Galois sur les points de division) et des propriétés ergodiques (le théorème de Ratner sur les flots unipotents dans les espaces de réseaux, ou plutôt l'équidistribution des points de Hecke). Nous généralisons notre méthode dans le cadre des variétés de Shimura. Dans ce cadre, en~revanche, l'un de nos ingrédients repose sur une forme de la conjecture de Mumford-Tate. Cela nous amène à étudier, dans une seconde partie, des raffinements de l'équidistribution des points de Hecke. Apparaissent alors certaines questions de divergence dans les espaces de réseaux. La méthode de linéarisation de Dani-Margulis ramène cette question à un énoncé géométrique. Nous apportons une réponse à cette question. Dans le cas réel, il s'agit d'une collaboration avec Nimish Shah. Dans le cas p-adique, nous sommes amenés à utiliser la géométrie ultramétrique récemment développée par Berkovich, en relation avec la théorie de Bruhat-Tits, et plus particulièrement des résultats recents de B. Remy, A. Thuillier et A. Werner. Nous sommes amenés en particulier à démontrer - des propriétés de décomposition des immeubles inspirées des théorème de décomposition de Mostow sur les espaces symétriques; - des propriétés de convexité sur les immeubles de fonctions analytiques, au sens ultramétrique, sur le groupe associé. Nous illustrons enfin comment nos résultats, en combinaison avec les travaux de D. Kleinbock et G. Tomanov, et le théorème de Ratner, s'appliquent à l'étude de problèmes S-arithmétiques dans les espaces de réseaux.
6

Sur les cohomologies des variétés de Griffiths-Schmid du groupe SU(2,2).

Charbord, Benjamin 04 March 2010 (has links) (PDF)
Dans cette thèse, on s'intéresse, sous deux aspects différents, à la cohomologie des variétés de Griffiths-Schmid attachées à une forme anisotrope du groupe SU(2,2). Ces variétés ont l'avantage, au contraire des variétés de Shimura, de parfois faire apparaître dans leur cohomologie des limites dégénérées de séries discrètes. La première partie étudie ce phénomène dans le cas des limites totalement dégénérées. On prouve que les classes attachées à ces représentations peuvent s'exprimer comme cup-produits d'autres classes attachées à des séries discrètes. La seconde partie étudie les liens entre deux différentes variétés de Griffiths-Schmid obtenues à partir de deux structures complexes. L'une est celle considérée dans la première partie, et l'autre est fibrée holomorphiquement sur une variété de Shimura. On prouve l'existence d'une application bijective entre certains espaces de cohomologie, en s'appuyant sur une interprétation en termes de fonctions holomorphes de la cohomologie de Dolbeault. Ce résultat est généralisé dans l'annexe aux cas des groupes SU(n,n) et SU(n+1,n).
7

La conjecture d'André-Pink : orbites de Hecke et sous-variétés faiblement spéciales

Orr, Martin 25 September 2013 (has links) (PDF)
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersection dense avec une orbite de Hecke est faiblement spéciale. On démontre cette conjecture dans le cas de courbes dans une variété de Shimura de type abélien, ainsi que dans certains cas de sous-variétés de dimension supérieure. Ceci est un cas spécial de la conjecture de Zilber-Pink. C'est une généralisation de théorèmes d'Edixhoven et Yafaev quand l'orbite de Hecke se compose de points spéciaux, de Pink quand l'orbite de Hecke se compose de points Galois génériques, et de Habegger et Pila quand la variété de Shimura est un produit de courbes modulaires. Notre démonstration de la conjecture d'André-Pink pour les courbes dans l'espace de modules des variétés abéliennes principalement polarisées est basée sur la méthode de Pila et Zannier, utilisant une variante forte du théorème de comptage de Pila-Wilkie. On obtient les bornes galoisiennes requises grâce au théorème d'isogénie de Masser et Wüstholz. Afin de relier les bornes sur les isogénies aux hauteurs, on démontre également diverses bornes concernant l'arithmétique des formes hermitiennes sur l'anneau d'endomorphismes d'une variété abélienne. Afin d'étendre le résultat sur la conjecture d'André-Pink aux courbes dans les variétés de Shimura de type abélien et à certains cas de sous-variétés de dimension supérieure, on étudie les propriétés fonctorielles de plusieurs variantes des orbites de Hecke. Un chapitre concerne les rangs des groupes de Mumford-Tate de variétés abéliennes complexes. On y démontre une minoration de ces rangs en fonction de la dimension de la variété abélienne, étant donné que ses sous-variétés abéliennes simples sont deux à deux non isogènes.
8

Relation de congruence pour les variétés de Shimura associées aux groupes unitaires GU (n-1,1)

Koskivirta, Jean-Stefan 07 May 2013 (has links) (PDF)
Blasius et Rogawski ont formulé une conjecture qui prévoit que l'action du Frobenius sur la cohomologie d'une variété de Shimura est annulée par un certain polynôme, à coefficients dans l'algèbre de Hecke. C'est l'analogue de la célèbre relation d'Eichler-Shimura pour la courbe modulaire. Dans cette thèse, on démontre cette conjecture pour les variétés de Shimura associées aux groupes unitaires en signature (n-1,1) quand n est impair. Par ailleurs, on étudie certains aspects dans le cas particulier n=3. On montre explicitement la relation de congruence sur le lieu ordinaire. De plus, on étudie le graphe des cristaux supersinguliers et les relèvements d'isogénies en caractéristique nulle.
9

Relation de congruence pour les variétés de Shimura associées aux groupes unitaires GU (n-1,1)

Koskivirta, Jean-Stefan 07 May 2013 (has links) (PDF)
Blasius et Rogawski ont formulé une conjecture qui prévoit que l'action du Frobenius sur la cohomologie d'une variété de Shimura est annulée par un certain polynôme, à coefficients dans l'algèbre de Hecke. C'est l'analogue de la célèbre relation d'Eichler-Shimura pour la courbe modulaire. Dans cette thèse, on démontre cette conjecture pour les variétés de Shimura associées aux groupes unitaires en signature (n-1,1) quand n est impair. Par ailleurs, on étudie certains aspects dans le cas particulier n=3. On montre explicitement la relation de congruence sur le lieu ordinaire. De plus, on étudie le graphe des cristaux supersinguliers et les relèvements d'isogénies en caractéristique nulle.
10

Relation de congruence pour les variétés de Shimura associées aux groupes unitaires GU (n-1,1) / Congruence relation for Shimura varieties associated to unitary groups GU (n-1,1)

Koskivirta, Jean-stefan 07 May 2013 (has links)
Blasius et Rogawski ont formulé une conjecture qui prévoit que l'action du Frobenius sur la cohomologie d'une variété de Shimura est annulée par un certain polynôme, à coefficients dans l'algèbre de Hecke. C'est l'analogue de la célèbre relation d'Eichler-Shimura pour la courbe modulaire. Dans cette thèse, on démontre cette conjecture pour les variétés de Shimura associées aux groupes unitaires en signature (n-1,1) quand n est impair. Par ailleurs, on étudie certains aspects dans le cas particulier n=3. On montre explicitement la relation de congruence sur le lieu ordinaire. De plus, on étudie le graphe des cristaux supersinguliers et les relèvements d'isogénies en caractéristique nulle. / Blasius and Rogawski have stated a conjecture saying that the action of the Frobenius element on the cohomology of a Shimura variety is annihilated by some polynomial with coefficients in the Hecke algebra. This is the analogue of the Eichler-Shimura congruence relation for the modular curve. In this thesis, we prove this conjecture for Shimura varieties associated to unitary groups in signature (n-1,1) when n is odd. We also investigate some particular aspects in the case n=3. We explicitely show the congruence relation on the ordinary locus. Further, we study the graph of supersingular Dieudonné crystals and liftings of isogenies to characteristic zero.

Page generated in 0.0573 seconds