• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Points de Darmon et variétés de Shimura

Gartner, Jerome 11 January 2011 (has links) (PDF)
Cette thèse s'intéresse à la recherche de points rationnels sur les courbes elliptiques. Darmon et Logan ont proposé une construction conjecturale de points rationnels sur des courbes elliptiques modulaires définies sur un corps de nombres totalement réel. Cette construction va au delà de la construction classique des points de Heegner. C'est sur la généralisation de ces travaux que porte cette thèse. Après un premier chapitre de rappels concernant essentiellement les variétés de Shimura, on construit, dans le chapitre deux une forme différentielle dont l'ensemble des périodes est, sous une conjecture due à Yoshida, un réseau. On y définit aussi un ensemble de cycles dont la classe d'homologie est de torsion. A l'aide de ces données, on énonce au chapitre suivant une conjecture généralisant celle de Darmon et Logan. On s'interesse aussi aux propriétés de ces nouveaux points, principalement en lien avec les théorèmes "classiques" de Gross-Zagier et Gross-Kohnen-Zagier. Le chapitre 4 tente de rendre holomorphes les opérations du chapitre 2, et le chapitre 5 de les rendre plus explicites. Cette thèse comporte une annexe concernant les vérifications informatiques de la conjecture de Darmon.
2

P-adic Gross-Zagier formula for Heegner points on Shimura curves over totally real fields / Formule de Gross-Zagier P-adique pour les points de Heegner sur les courbes de Shimura sur corps totalement réels

Ma, Li 30 September 2014 (has links)
Le résultat principal de ce texte est une généralisation de la formule de Gross-Zagier p-adique de Perrin-Riou au cas de courbes de Shimura sur les corps totalement réels. Soit F un corps totalement réel. Soit f une forme modulaire de Hilbert sur F de poids parallel 2, qui est une forme nouvelle et est ordinaire en p. Soit E est une extension quadratique totalement imaginaire de F de discriminant premier à p et au conducteur de f. On peut construire une fonction L p-adique qui interpole valeurs spéciales de la fonction L complexe associée à f, E et caractères de Hecke d'ordre fini de E. La formule p-adique de Gross-Zagier relie la dérivée centrale de cette fonction L p-adique à la hauteur d'un divisor de Heegner sur une certaine courbe de Shimura. La stratégie de la preuve est proche de celle du travail original de Perrin-Riou. Dans la partie analytique, on construit le noyau analytique par calculs adéliques; dans la partie géométrique, on décompose le noyau géométrique en deux parties: places hors de p et places divisant p. Pour les places hors de p, les hauteurs p-adiques sont essentiellement des nombres d'intersection et sont calculées dans les travaux de S. Zhang, et il s'avère que cette partie est bien liée au noyau analytique. Pour les places divisant p, on utilise la méthode dans le travail de J. Nekovar pour montrer que la contribution de cette partie est nulle. / The main result of this text is a generalization of Perrin-Riou's p-adic Gross-Zagier formula to the case of Shimura curves over totally real fields. Let F be a totally real field. Let f be a Hilbert modular form over F of parallel weight 2, which is a new form and is ordinary at p. Let E be a totally imaginary quadratic extension of F of discriminant prime to p and to the conductor of f. We may construct a p-adic L function that interpolates special values of the complex L functions associated to f, E and finite order Hecke characters of E. The p-adic Gross-Zagier formula relates the central derivative of this p-adic L function to the p-adic height of a Heegner divisor on a certain Shimura curve. The strategy of the proof is close to that of the original work of Perrin-Riou. In the analytic part, we construct the analytic kernel via adelic computations, in the geometric part, we decompose the geometric kernel into two parts: places outside p and places dividing p. For places outside p, the p-adic heights are essentially intersection numbers and are computed in works of S. Zhang, and it turns out that this part is closely related to the analytic kernel. For places dividing p, we use the method in the work of J. Nekovar to show that the contribution of this part is zero.

Page generated in 0.0826 seconds