Spelling suggestions: "subject:"théorie dde lodge"" "subject:"théorie dde hodge""
1 |
Cohomologie symplectiqueBoucher, Samuel 10 1900 (has links) (PDF)
Le sujet principal de ce mémoire est la théorie de Hodge symplectique que Tseng et Yau ont développée pour des variétés symplectiques. Nous commençons par un rappel d'algèbre linéaire et de géométrie avant de résumer les concepts introduits par Tseng et Yau. Nous présentons des résultats classiques comme le théorème de Moser et celui de Darboux. Nous démontrons aussi l'existence d'une métrique compatible pour chaque variété symplectique. Nous citons aussi la décomposition de Hodge. Nous allons, par la suite, résumer les idées de base de la théorie de Hodge symplectique, qui est inspirée de la décomposition de Hodge riemannienne, en appliquant ses résultats aux variétés presque-kählériennes. Pour ce faire, nous rappelons les résultats de Merkulov et de Mathieu à propos de la propriété forte de Lefschetz. Nous présentons les formes primitives et la représentation sl(2,C) de celles-ci. Nous allons présenter la démonstration de Lejmi d'une proposition de McDuff à propos des zéros de champs de Killing sur une variété compact presque-kählérienne. Par la suite, nous allons présenter les travaux de Tseng et Yau en débutant par les différentes cohomologies qu'ils ont définies et nous présentons différents résultats qu'ils ont obtenus. Après un bref rappel de l'algèbre de Lie, nous présentons 2 exemples de variétés que nous allons pouvoir classifier à partir de cette théorie. Nous allons présenter un exemple de 4-variété non-kählérienne où nous utilisons le résultat de McDuff et Lejmi pour y parvenir et nous reprenons l'exemple de Tseng et Yau d'une 6-variété qui ne possède pas la propriété forte de Lefschetz en utilisant les outils présentés le long de ce mémoire.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : variété presque-complexes, géométrie symplectique, théorie de hodge.
|
2 |
Conjecture de l'inertie modérée de SerreCaruso, Xavier 07 December 2005 (has links) (PDF)
Le but de cette thèse est de donner une démonstration complète de la conjecture de l'inertie modérée de Serre qui donne des contraintes (en fonction de e et de r) sur l'action de Galois sur le groupe de cohomologie H^r_et(X_Kbar, Z/pZ) si X est une variété propre et lisse, à réduction semi-stable, sur un corps p-adique K d'indice de ramification absolue e.<br /><br />Pour ce faire, nous établissons, dans le cas er < p-1, un isomorphisme de périodes reliant le groupe de cohomologie étale précédent à un groupe de cohomologie log-cristalline de la fibre spéciale de X. Nous montrons ensuite que ce dernier groupe est un objet de la catégorie M^r définie par Breuil. La conclusion découle finalement d'un examen relativement fin des objets de M^r.<br /><br />Le dernier chapitre de cette thèse (qui est indépendant) est consacré à la construction d'une dualité sur la catégorie M^r.
|
3 |
Cycles algébriques et cohomologie de certaines variétés projectives complexesCharles, François 06 April 2010 (has links) (PDF)
Dans ma thèse, je propose plusieurs contributions à l'étude de la cohomologie des variétés projectives complexes ainsi qu'à la construction de cycles algébriques. Le mémoire se compose de plusieurs parties qui, si elles sont indépendantes, essaient toutes trois de tirer parti de la nature multiple de ces variétés, à la fois variétés kähleriennes, donc objets analytiques, variétés algébriques, et enfin objets arithmétiques, étant toujours définies sur un corps de type fini sur $\Q$. La première partie de ce texte, parue au journal de Crelle, s'intéresse au problème de la topologie des variétés conjuguées. On y répond à une question de Grothendieck en y exhibant deux variétés conjuguées dont les algèbres de cohomologie réelles ne sont pas isomorphes. Dans une deuxième partie, on aborde le problème de la construction des cycles algébriques dont l'existence est prévue par les conjectures standards, pour ensuite examiner de manière plus détaillée le cas des variétés hyperkahleriennes. Nous utilisons principalement des méthodes infinitésimales en théorie de Hodge. Enfin, dans la troisième partie, parue aux International Mathematical Research Notices, on s'intéresse au problème du lieu de définition des fonctions normales associées aux familles de cycles dans les variétés projectives complexes. On y prolonge des résultats récents de Brosnan et Pearlstein qui démontrent l'algébricité de ce lieu en prouvant des théorèmes de comparaison avec la cohomologie étale $l$-adique et en démontrant, sous certaines hypothèses de monodromie, que ces lieux sont définis sur un corps de nombres.
|
4 |
Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales / On some geometrical and arithmetical aspects of orthogonal Shimura varietiesTayou, Salim 17 June 2019 (has links)
Cette thèse a pour objet l'étude de quelques propriétés arithmétiques et géométriques des variétés de Shimura orthogonales. Ces variétés apparaissent naturellement comme espaces de modules de structures de Hodge de type K3. Dans certains cas, elles paramètrent des objets géométriques tels que les surfaces K3 et leurs analogues en dimensions supérieures, les variétés hyperkähleriennes. Ce point de vue modulaire sera notre fil conducteur tout au long de ce mémoire. Ainsi, dans la première partie, on démontre un résultat d'équirépartition du lieu de Hodge dans les variations de structures de Hodge de type K3 au dessus d'une courbe complexe quasi-projective. Dans la deuxième partie, on étudie des analogues arithmétiques du résultat précédent. Un exemple d'énoncés qu'on obtient est le suivant: étant donnée une surface K3 définie sur un corps de nombres et ayant partout bonne réduction, alors sous certaine hypothèse d'approximation, il existe une spécialisation telle que le nombre de Picard géométrique croît strictement. Dans la troisième partie, on relie les problèmes du saut de nombre de Picard dans les familles de surfaces K3 à la question de construction de courbes rationnelles sur ces surfaces. Enfin, on étend un résultat de Bogomolov et Tschinkel. On montre notamment que toute surface K3 définie sur un corps algébriquement clos de caractéristique quelconque et admettant une fibration elliptique non-isotriviale contient une infinité de courbes rationnelles. / This thesis deals with some arithmetical and geometrical aspects of orthogonal Shimura varieties. These varieties appear naturally as moduli spaces of Hodge structures of K3 type. In some cases, they parametrize geometric objects as K3 surfaces and their analogous in higher dimensions, the hyperkähler varieties. This modular point of view will be our guiding principle throughout this dissertation. In the first part, we prove an equidistribution result of the Hodge locus in variations of Hodge structures of K3 type above complex quasi-projective curves. In the second part, we study analogous results in the arithemtic setting. An example of statements we get is the following: given a K3 surface having everywhere good reduction and satisfying an approximation hypothesis, there exists a specialization with strictly increasing geometric Picard rank. In both cases, our methods take advantage of the rich arithmetic, automorphic and geometric structure of orthogonal Shimura varieties as well as the Kuga-Satake construction that links them to moduli spaces of abelian varieties. Finally, we extend a result of Bogomolov and Tschinkel. In particular, we show that any K3 surface defined over an algebraically closed field of arbitrary characteristic and admitting a non-isotrivial elliptic fibration contains infinitely many rational curves.
|
5 |
Application des structures hermitiennes pour le calcul cohomologique d'une variété analytique via le théorème de HodgeD'Amours, Martin 12 April 2018 (has links)
No description available.
|
6 |
Autour des nombres de TamagawaLaurent, Arthur 28 June 2013 (has links) (PDF)
Les nombres de Tamagawa des courbes elliptiques apparaissent dans la formulation de la conjecture de Birch et Swinnerton-Dyer comme certains facteurs locaux. Bloch et Kato (1990) ont trouvé une vaste généralisation de cette définition classique en termes de la théorie de Hodge p-adique. Ils ont associé un nombre de Tamagawa Tam(T) à tout réseau T de représentations p-adiques de de Rham au sens de J.-M. Fontaine. Ces nombres interviennent dans les conjectures de Bloch et Kato sur les valeurs spéciales des fonctions L des motifs.J.-M. Fontaine et B.Perrin-Riou ont formulé une conjecture reliant Tam(T) et le nombre de Tamagawa Tam(T*}(1)) de la représentation duale. Cette conjecture est connue pour les représentations cristallines ce qui permet de calculer explicitement les nombres de Tamagawa des représentations cristallines dont les poids de Hodge-Tate sont tous positifs. En revanche, dans la plupart des autres cas, nous n'avons pas de méthode de calcul explicite. Cette thèse a pour but de donner un encadrement des nombres de Tamagawa des représentations absolument cristallines le long de la tour cyclotomique sans hypothèses supplémentaires sur les poids de Hodge-Tate. Le premier chapitre de cette thèse est dédié à des rappels sur la théorie de Hodge p-adique, la classification de Fontaine des représentations p-adique de corps locaux via la théorie des (phi, Gamma)-modules, sur la cohomologie galoisienne, sur les modules de Wach ou sur la cohomologie d'Iwasawa. Le second chapitre est dédié à l'exponentielle de Bloch and Kato. Seront rappelées sa définition et sa construction de l'exponentielle de Bloch and Kato en termes de (phi, Gamma)-modules faite par D.Benois. Cette dernière construction permet de généraliser deux résultats de D.Benois et L.Berger qui relient l'exponentielle aux modules de Wach et qui permet de décrire des objets qui apparaissent naturellement dans l'étude des nombres de Tamagawa. Le dernier chapitre est le cœur de cette thèse. Nous commencerons en définissant les nombres de Tamagawa Tam(T) et en donnant certaines propriétés et résultats déjà connus. Nous énonçons ensuite le théorème final qui donne un encadrement des nombres de Tamagawa d'une représentation absolument cristalline V. Y sont également donnés certains cas d'égalité qui permettent de retrouver des formules connues --- lorsque V est positive ou lorsqu'elle provient d'une courbe elliptique et plus généralement d'un groupe formel de dimension 1 et de hauteur 2. Pour prouver ces résultats, nous écrivons les nombres de Tamagawa sous forme d'un indice généralisé dans lequel apparaissent les objets étudiés dans le chapitre précédent. La thèse se termine avec l'étude de plusieurs cas particuliers qui permettent de retrouver des résultats déjà connus.
|
7 |
Laplacien hypoelliptique, torsion analytique et théorème de Cheeger-Müller / The hypoelliptic Laplacian, analytic torsion and Cheeger-Müller theoremShen, Shu 13 May 2014 (has links)
L'objet de cette thèse est de démontrer une formule reliant les métriques de Ray-Singer hypoelliptique et de Milnor sur le déterminant de la cohomologie d'une variété riemannienne compacte par une déformation à la Witten du laplacien hypoelliptique en théorie de de Rham. / The purpose of this thesis is to prove a formula relating the hypoelliptic Ray-Singermetric and the Milnor metric on the determinant of the cohomology of a compact Riemannian manifold by a Witten-like deformation of the hypoelliptic Laplacian in de Rham theory.
|
8 |
Laplacien hypoelliptique, torsion analytique et théorème de Cheeger-MüllerShen, Shu 13 May 2014 (has links) (PDF)
L'objet de cette thèse est de démontrer une formule reliant les métriques de Ray-Singer hypoelliptique et de Milnor sur le déterminant de la cohomologie d'une variété riemannienne compacte par une déformation à la Witten du laplacien hypoelliptique en théorie de de Rham.
|
9 |
Relèvements de représentations galoisiennes à valeurs dans des groupes algébriques / Lifting Galois representations with values in an algebraic groupHoang Duc, Auguste 21 October 2015 (has links)
Soient 1 -> N -> H -> H' -> 1 une suite exacte centrale de groupes algébriques sur Q_p^alg et F un corps de nombres. Etant donnée une représentation Galoisienne r' : Gal_F -> H', on s'intéresse à ses relèvements à valeurs dans H à travers le morphisme H -> H'. Un relèvement r : Gal_F -> H sera dit minimal, s'il est non-ramifié aux places où r' est non-ramifiée et est de Rham/semi-stable/cristalline aux places divisant p si r' l'est. Dans cette thèse, nous montrons l'existence de relèvements minimaux dans certains cas. / Let 1 -> N -> H -> H' -> 1 be an exact sequence of algebraic groups over Q_p^alg and F be a number field. Given a Galois representation r' : Gal_F -> H', we are interested in its lifts with values in H through the morphism H -> H'. We say a lift r : Gal_F -> H is minimal, if it is unramied at places where r' is unramified and is de Rham/semi-stable/crystalline at p-adic places if r' is so. In this thesis, we prove the existence of such minimal lifts in some cases.
|
10 |
Arithmétrique en différentes caractéristiques / Arithmetic in different characteristicsJalinière, Pierre 04 July 2016 (has links)
Cette thèse comporte trois volets indépendants en cryptographie, en théorie de Hodge p-adique et en analyse numérique.La première partie consiste en l'étude d'algorithmes performants de résolution du logarithme discret. La résolution du logarithme discret consiste à déterminer les exposants d'une famille fixée de générateurs dans la décomposition des éléments du groupe. Dans le cas des groupes multiplicatifs d'un corps fini, la complexité des calculs dépendent de la taille - dite de petite, moyenne ou grande caractéristique- de la caractéristique du corps dans lesquels on effectue les calculs.Nous présentons différents algorithmes dans chacune des caractéristiques (petite, moyenne ou grande) en précisant quel est l'algorithme le plus performant dans chacun des cas.La seconde partie s'inscrit dans le contexte du programme de Langlands p-adique. Nous présentons une généralisation de l'un des outils centraux de la théorie, les modules de Breuil-Kisin, en plusieurs variables La troisième partie est un travail effectué en collaboration avec Victor Vilaça Da Rocha, Roberta Tittarelli, Richard Sambilason Rafefimanana, Victor Michel-Dansac et Benjamin Couéraud. Il a été initié lors de la treizième SEME, Semaine d'Etudes Maths Entreprises organisée par l'Agence pour les Mathématiques en Interaction avec l'Entreprise et la Société (AMIES).L'Institut Français du Pétrole et des Energies Nouvelles nous a soumis un problème de résolution numérique d'un système d'équations modélisant la désorption d'un gaz de schiste en une dimension.Nous proposons plusieurs schémas du premier ordre recourant à un traitement implicite de l'équation de relaxation. Enfin nous présentons un schéma numérique d'ordre deux en temps. / In this thesis, we present three independent works in cryptography, p-adic Hodge theory and Numerical analysis.First we present several algorithms to solve the discrete logarithm in several characteristic finite fields. We are particularly interested with the determination of classes of polynomial functions with small coefficients.The second part of the thesis deals with one of the major object of p-adic Hodge theory. We present a multi-variable version of Breuil-Kisin modules where the Lubin-Tate tower replaces the classical cyclotomic tower. He third proposes two numerical schemes for the modelisation of desorption of shale gaz.
|
Page generated in 0.0719 seconds