Return to search

On the algebraic side of the Iwasawa theory of some non-ordinary Galois representations

Soit F un corps de nombres non-ramifié en un nombre premier impair p. Soit F∞) la Zp-extension cyclotomique de F et Λ = Zp [[Gal(F∞ /F)]] l’algèbre d’Iwasawa de Gal (F∞ /F) (signe de asymptotiquement égal) Zp sur Zp. Généralisant les groupes de Selmer plus et moins de Kobayashi, Büyükboduk et Lei ont défini des groupes de Selmer signés sur F∞ pour certaines représentations galoisiennes. En particulier, leurs constructions s’appliquent aux cas des variétés abéliennes définies sur F ayant bonne réduction supersingulière en chaque premier de F divisant p. Ces groupes de Selmer signés ont naturellement une structure de Λ -modules de type fini. Nous commençons par prouver une équation fonctionnelle pour ces groupes de Selmer signés qui relie les groupes de Selmer signés d’une telle représentation aux groupes de Selmer signés du dual de Tate de la représentation. Puis, nous étudions la structure de Λ -module des groupes de Selmer signés. Sous l’hypothèse qu’ils sont des Λ-modules de cotorsion, nous montrons qu’ils ne possèdent pas de sous- Λ -module propre d’indice fini. Nous déduisons de ce résultat quelques applications arithmétiques. Nous calculons le Λ-corang du groupe de Selmer de Bloch- Kato sur F∞ associé à la représentation, et, en étudiant la caractéristique d’Euler- Poincaré de ces groupes de Selmer signés, nous obtenons une formule explicite de la taille du groupe de Selmer de Bloch-Kato sur F. De plus, pour deux telles représentations isomorphes modulo p, nous comparons les invariants d’Iwasawa de leurs groupes de Selmer signés. Finalement, en supposant que les groupes de Selmer signés associés à une variété abélienne supersingulière sont des Λ -modules de cotorsion, nous montrons que le rang des groupes de Mordell-Weil de la varitété abélienne est borné le long de l’extension cyclotomique. / Let F be a number field unramified at an odd rational prime p. Let F∞ be the Zp-cyclotomic extension of F and Λ = Zp[[Gal(F∞/F)]] be the Iwasawa algebra of Gal (F∞/F) (signe de asymptotiquement égal) Zp over Zp. Generalizing Kobayashi’s plus and minus Selmer groups, Büyükboduk and Lei have defined signed Selmer groups over F∞ for some non-ordinary Galois representations. In particular, their construction applies to abelian varieties defined over F with good supersingular reduction at primes of F dividing p. These signed Selmer groups have a natural structure of finitely generated Λ-modules. We first prove a functional equation for these signed Selmer groups, relating the signed Selmer groups of such a representation to the signed Selmer groups of Tate dual of the representation. Second, we study the structure of Λ-module of the signed Selmer groups. Assuming that they are cotorsion Λ-modules, we show that they have no proper sub-Λ-module of finite index. We deduce from this a number of arithmetic applications. We compute the Λ-corank of the Bloch-Kato Selmer group attached to the representation over F∞, and, on studying the Euler-Poincaré characteristic of these signed Selmer groups, we obtain an explicit formula on the size of the Bloch-Kato Selmer group over F. Furthermore, for two such representations that are isomorphic modulo p, we compare the Iwasawa-invariants of their signed Selmer groups. Finally, under the hypothesis that the signed Selmer groups associated to a supersingular abelian variety are cotorsion Λ-modules, we show that the rank of Mordell-Weil groups of the abelian variety is bounded along the cyclotomic extension.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/32466
Date21 November 2018
CreatorsPonsinet, Gautier
ContributorsLei, Antonio
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (vi, 60 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0121 seconds