• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the algebraic side of the Iwasawa theory of some non-ordinary Galois representations

Ponsinet, Gautier 21 November 2018 (has links)
Soit F un corps de nombres non-ramifié en un nombre premier impair p. Soit F∞) la Zp-extension cyclotomique de F et Λ = Zp [[Gal(F∞ /F)]] l’algèbre d’Iwasawa de Gal (F∞ /F) (signe de asymptotiquement égal) Zp sur Zp. Généralisant les groupes de Selmer plus et moins de Kobayashi, Büyükboduk et Lei ont défini des groupes de Selmer signés sur F∞ pour certaines représentations galoisiennes. En particulier, leurs constructions s’appliquent aux cas des variétés abéliennes définies sur F ayant bonne réduction supersingulière en chaque premier de F divisant p. Ces groupes de Selmer signés ont naturellement une structure de Λ -modules de type fini. Nous commençons par prouver une équation fonctionnelle pour ces groupes de Selmer signés qui relie les groupes de Selmer signés d’une telle représentation aux groupes de Selmer signés du dual de Tate de la représentation. Puis, nous étudions la structure de Λ -module des groupes de Selmer signés. Sous l’hypothèse qu’ils sont des Λ-modules de cotorsion, nous montrons qu’ils ne possèdent pas de sous- Λ -module propre d’indice fini. Nous déduisons de ce résultat quelques applications arithmétiques. Nous calculons le Λ-corang du groupe de Selmer de Bloch- Kato sur F∞ associé à la représentation, et, en étudiant la caractéristique d’Euler- Poincaré de ces groupes de Selmer signés, nous obtenons une formule explicite de la taille du groupe de Selmer de Bloch-Kato sur F. De plus, pour deux telles représentations isomorphes modulo p, nous comparons les invariants d’Iwasawa de leurs groupes de Selmer signés. Finalement, en supposant que les groupes de Selmer signés associés à une variété abélienne supersingulière sont des Λ -modules de cotorsion, nous montrons que le rang des groupes de Mordell-Weil de la varitété abélienne est borné le long de l’extension cyclotomique. / Let F be a number field unramified at an odd rational prime p. Let F∞ be the Zp-cyclotomic extension of F and Λ = Zp[[Gal(F∞/F)]] be the Iwasawa algebra of Gal (F∞/F) (signe de asymptotiquement égal) Zp over Zp. Generalizing Kobayashi’s plus and minus Selmer groups, Büyükboduk and Lei have defined signed Selmer groups over F∞ for some non-ordinary Galois representations. In particular, their construction applies to abelian varieties defined over F with good supersingular reduction at primes of F dividing p. These signed Selmer groups have a natural structure of finitely generated Λ-modules. We first prove a functional equation for these signed Selmer groups, relating the signed Selmer groups of such a representation to the signed Selmer groups of Tate dual of the representation. Second, we study the structure of Λ-module of the signed Selmer groups. Assuming that they are cotorsion Λ-modules, we show that they have no proper sub-Λ-module of finite index. We deduce from this a number of arithmetic applications. We compute the Λ-corank of the Bloch-Kato Selmer group attached to the representation over F∞, and, on studying the Euler-Poincaré characteristic of these signed Selmer groups, we obtain an explicit formula on the size of the Bloch-Kato Selmer group over F. Furthermore, for two such representations that are isomorphic modulo p, we compare the Iwasawa-invariants of their signed Selmer groups. Finally, under the hypothesis that the signed Selmer groups associated to a supersingular abelian variety are cotorsion Λ-modules, we show that the rank of Mordell-Weil groups of the abelian variety is bounded along the cyclotomic extension.
2

Conjecture de Greenberg généralisée et capitulation dans les Zp-extensions d'un corps de nombres

Vauclair, David 08 December 2005 (has links) (PDF)
Le cadre général de cette thèse est celui de la théorie d'Iwasawa. Nous nous intéressons plus<br />particulièrement à la conjecture de Greenberg généralisée (multiple) (GG). Après avoir relié celle-ci à différents problèmes de capitulation pour certains groupes de cohomologie p-adiques en degré 2, nous proposons une version faible (GGf) de (GG) dont nous montrons la validité, pour tout corps de nombres F contenant une racine primitive p-ième de l'unité et un corps quadratique imaginaire dans lequel (p) se décompose, du moment que F vérifie la conjecture de Leopoldt. Les outils développés permettent de retrouver et de généraliser (notamment dans des Zp-extensions autre que la Zp-extension<br />cyclotomique) un certain nombre de résultats classiques en théorie d'Iwasawa.
3

On Z_p-extensions of real abelian number fields

Nuccio Mortarino Majno Di Capriglio, Fillipo A.E. 21 May 2009 (has links) (PDF)
Cette thèse s'articule autour de la Conjecture de Greenberg en théorie d'Iwasawa, qui prédit que les nombres de classes des corps de nombres appartenants à une Z_p extension d'un corps totalement réel sont bornés. On discute des critères de validité de la Conjecture et une application de la Conjecture à l'arithmétique des Unités Cyclotomiques.
4

Invariants d'Iwasawa dans les extensions de Lie p-adiques des corps de nombres

Perbet, Guillaume 06 December 2011 (has links) (PDF)
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généralisés dans les extensions de Lie p-adiques de corps de nombres.Ces invariants ont été introduits par Iwasawa pour les Zp-extensions. Les travaux de Venjakob sur la structure des modules sur l'algèbre d'Iwasawa d'un groupe de Lie p-adique ont permis d'en généraliser la définition à la théorie non-commutative. Par des techniques de descente et une étude algébrique fine de la structure des modules d'Iwasawa sur un groupe non-commutatif, on dégage des formules asymptotiques pour les p-groupes des classes généralisés le long d'une extension de corps de nombres de groupe de Galois p-valué. Ces formules ont pour paramètres les invariants d'Iwasawa de l'extension. Elles sont rendues plus précises dans le cas des Zp-extensions, où on remarque qu'un défaut de descente doit être pris en compte et est d'impact non négligeable sur le résultat final. Ces résultats asymptotiques sont ensuite exploités à l'aide de la théorie du miroir. Ceci conduit à des formules de dualité entre ramification et décomposition concernant les invariants d'Iwasawa.
5

Calculs explicites en théorie d'Iwasawa / Explicit computing in Iwasawa theory

Varescon, Firmin 11 June 2014 (has links)
Dans le premier chapitre de cette thèse on rappelle l'énoncé ainsi que des équivalents de la conjecture de Leopoldt puis l'on donne un algorithme permettant de vérifier cette conjecture pour un corps de nombre et premier donnés. Pour la suite on suppose cette conjecture vraie pour le premier p fixé Et on étudie la torsion du groupe de Galois de l'extension abélienne maximale p-ramifiée. On présente une méthode qui détermine effectivement les facteurs invariants de ce groupe fini. Dans le troisième chapitre on donne des résultats numériques que l'on interpréte via des heuristiques à la Cohen-Lenstra. Dans le quatrième chapitre, à l'aide de l'algorithme qui permet le calcul de ce module, on donne des exemples de corps et de premiers vérifiant la conjecture de Greenberg. / In the first chapter of this thesis we explain Leopoldt's conjecture and some equivalent formulations. Then we give an algorithm that checks this conjecture for a given prime p and a number field. Next we assume that this conjecture is true, and we study the torsion part of the Galois group of the maximal abelian p-ramified p-extension of a given number field. We present a method to compute the invariant factors of this finite group. In the third chapter we give an interpretation of our numrical result by heuristics “à la” Cohen-Lenstra. In the fourth and last chapter, using our algorithm which computes this torsion submodule, we give new examples of numbers fields which satisfy Greenberg's conjecture.
6

Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate

Fourquaux, Lionel 12 December 2005 (has links) (PDF)
En 1994, Perrin-Riou a donné un procédé général de construction de fonctions L p-adiques des motifs à partir d'un système d'éléments « globaux ». Ce procédé fait intervenir une application « exponentielle de Perrin-Riou » qui interpole les exponentielles de Bloch-Kato associées à la représentation p-adique étudiée tordue par les puissances du caractère cyclotomique. Ces résultats ont ensuite été développés, avec en particulier la preuve par Colmez de la loi de réciprocité explicite conjecturée par Perrin-Riou. Plusieurs travaux récents suggèrent que ces résultats peuvent se généraliser en y remplaçant les extensions cyclotomiques par les extensions associées à un groupe de Lubin-Tate. Cette thèse donne une telle généralisation pour la construction de l'application « logarithme de Perrin-Riou » trouvée par Colmez.
7

Capitulation des noyaux sauvages étales

Validire, Romain 24 June 2008 (has links) (PDF)
Ce travail de thèse porte sur deux problèmes distincts, tous deux en lien avec le comportement galoisien de certains noyaux de localisation en cohomologie étale : les noyaux sauvages étales. Fixons un nombre premier p et $F_{\infty}$ une $\Z_p$-extension d'un corps de nombres $F$.<br />La structure de groupe abélien du p-groupe des classes des étages de $F_{\infty}/F$ est asymptotiquement bien connue : nous montrons, au moyen de la théorie d'Iwasawa des $\Z_p$-extensions, un analogue de ce résultat en $K$-théorie supérieure.<br />Dans un deuxième temps, nous étudions le groupe de Galois sur $F_{\infty}$ de la pro-p-extension, non ramifiée, p-décomposée maximale de $F_{\infty}$, lorsque $F_{\infty}$ est la $\Z_p$-extension cyclotomique de $F$. Après avoir établi un lien entre la structure de ce groupe et le comportement galoisien des noyaux sauvages étales, nous donnons divers critères effectifs de non pro-p-liberté pour ce groupe.
8

Sur la structure des noyaux sauvages étales des corps de nombres

Caputo, Luca 02 April 2009 (has links)
Le but de ce travail est de présenter des résultats à propos des noyaux sauvages étales. Soit $p$ un nombre premier. Les noyaux sauvages étales d'un corps de nombres $F$ (qui sont dénotés par $WK^{ét}_{2i}(F)$ avec $i\in \mathbb{Z}$) sont des généralisations cohomologiques de la $p$-partie du noyau sauvage classique $WK_{2}(F)$, qui est le sous-groupe de $K_2(F)$ constitué par les symboles qui sont triviaux pour tout symbole de Hilbert local. Ces noyaux sauvages étales sont des $\mathbb{Z}_p$-modules et l'on sait qu'ils sont finis lorsque $i\geq 1$ (et même, suivant les conventions, si $i=0$) : on conjecture en plus qu'ils soient toujours finis (conjecture de Schneider). Dans la suite, on va supposer que cette conjecture est satisfaite. On va s'intéresser en particulier à deux problèmes. Le premier, qui est étudié dans les Chapitres 2 et 3, est la déterminations des structures de groupe qui sont réalisables comme noyaux sauvages étales. En d'autres termes, si l'on se donne un corps de nombres $F$, un $p$-groupe abélien fini $X$ et un nombre entier $i\in\mathbb{Z}$, on peut se demander s'il existe une extension finie $E/F$ telle que $WK^{ét}_{2i}(E)\cong X$. Une question semblable a été étudiée pour les $p$-groupes des classes et il y a un relation précise entre les $p$-groupes des classes et les noyaux sauvages étales. Par conséquent, on peut espérer traduire les résultats classiques dans le contexte des noyaux sauvages étales. Peut-être est-il intéressant de donner ici une courte récapitulation sur le problème de réalisation classique pour les $p$-groupes des classes. Essentiellement, deux techniques sont utilisées. D'un coté, pour un corps de nombres $F$ fixé, l'on étudie la $p$-tour des corps des classes de Hilbert de $F$ : Yahagi a montré que cette tour est infinie si et seulement s'il n'y a pas d'extensions finies $E/F$ dont le $p$-groupe des classes soit trivial. De plus, si la tour est finie, alors toute structure de $p$-groupe abélien apparaît comme $p$-groupe des classes pour quelque extension finie $E/F$. De l'autre coté, une fois que l'on sait que pour un corps de nombres $F$ fixé, il existe une extension finie dont le $p$-groupe de classes est trivial, alors on peut se servir de la théorie du corps des classes et de la théorie des genres pour trouver, pour n'importe quel $p$-groupe abélien fini $X$, une extension finie $E/F$ telle que le $p$-groupe des classes de $E$ est isomorphe à $X$. En effet, la traduction du résultat de Yahagi dans le contexte des noyaux sauvages étales n'est pas tout à fait immédiate : la relation entre le groupe des classes et le noyau sauvage étale d'un corps de nombres $F$ s'écrit dans le langage de $\Gamma$-modules, où $\Gamma$ est le groupe de Galois sur $F$ de la $\mathbb{Z}_p$-extension cyclotomique de $F(\mu_p)$. La façon la plus naturelle pour s'approcher du problème est donc de considérer le problème de réalisabilité pour les modules d'Iwasawa. Ce problème a été étudié (parmi d'autres auteurs) par Ozaki : il a montré que pour tout $\Lambda$-module fini $X$, il existe un corps de nombres $k$ tel que le module d'Iwasawa de $k$ (c'est à dire la limite projective des $p$-groupes des classes le long de la tour cyclotomique) est isomorphe à $X$. Les techniques utilisées sont inspirées à celles de Yahagi et en fait elles s'appuient d'une façon fondamentale du fait que $p$ ne divise pas le nombre des classes de $\mathbb{Q}$. Pour obtenir la traduction de ce résultat en termes de noyaux sauvages étales il faut considérer plutôt $\mathbb{Q}(\mu_p)$ -plus précisément un sous-corps convenable de $\mathbb{Q}(\mu_p)$. Bien entendu, le nombre des classes de ce sous-corps n'est plus premier avec $p$ (du moment que $p$ peut être irrégulier). D'autre part, si $p$ est régulier, la preuve d'Ozaki peut être adaptée (comme l'on montre dans le Chapitre 2). / The aim of the present work is to prove some results about étale wild kernels. Let $p$ be an odd prime. Etale wild kernels of a number field $F$ (which are denoted $WK^{ét}_{2i}(F)$ for $i\in \mathbb{Z}$) are cohomological generalizations of the $p$-part of the classical wild kernel $WK_{2}(F)$, which is the subgroup of $K_2(F)$ made up by symbols which are trivial for any local Hilbert symbol. Etale wild kernels are $\mathbb{Z}_p$-modules which are known to be finite if $i\geq1$ (and even if $i=0$, depending on the chosen convention): actually they are conjectured to be always finite (the Schneider conjecture). In the following we will suppose that this is always the case. Two problems are studied in detail. The first, which is analyzed in Chapter 2 and Chapter 3, is to determine which group structures are realizable for étale wild kernels. In other words, given a number field $F$, a finite abelian $p$-group $X$ and $i\in \mathbb{Z}$, one can ask if there exists a finite extension $E/F$ such that $WK^{ét}_{2i}(E)\cong X$. A similar problem has been studied for $p$-class groups and there are precise relations between the $p$-class group and étale wild kernels. Therefore one may expect to translate results from $p$-class groups to étale wild kernels. It is maybe useful to give here a short account on the classical realizability problem for $p$-class groups. Essentially two kind of techniques are used. On the one hand, for a fixed number field $F$, one studies the Hilbert $p$-class field tower of $F$: it has been shown by Yahagi that the Hilbert $p$-class tower of $F$ is infinite if and only if there is no finite extension $E/F$ whose $p$-class group is trivial. Furthermore, if the Hilbert $p$-class tower of $F$ is finite, then every finite abelian $p$-group structure appears as $p$-class group of some finite extension $E/F$. On the other hand, once we know that for a fixed number field $F$ there exists a finite extension whose $p$-class group is trivial, then class field theory and genus theory are used to exhibit, for any finite abelian $p$-group $X$, a finite extension $E/F$ such that the $p$-class group of $E$ is isomorphic to $X$. Actually, the translation of Yahagi's result in terms of étale wild kernels is not immediate: the relation between the class groups and étale wild kernels of a number field $F$ is expressed in terms of $\Gamma$-modules structures, where $\Gamma$ is the Galois group over $F$ of the cyclotomic $\mathbb{Z}_p$-extension of $F(\mu_p)$. The most natural way to approach the problem is then to consider the realizability problem for Iwasawa modules. This problem is studied (among many others) by Ozaki: he proved that for any finite $\Lambda$-module $X$, there exists a number field $k$ such that the Iwasawa module of $k$ (i.e. the projective limit of $p$-class groups along the cyclotomic $\mathbb{Z}_p$-extension) is isomorphic to $X$. The techniques used are inspired to those by Yahagi and actually Ozaki makes fundamental use of the fact that $p$ does not divide the class number of $\mathbb{Q}$. To get the translation of this result in terms of étale wild kernels one has to consider $\mathbb{Q}(\mu_p)$ -more precisely a suitable subfield of $\mathbb{Q}(\mu_p)$ depending on $i$- instead of $\mathbb{Q}$. Here the problem is that the class number of this suitable subfield is no more coprime with $p$ (as $p$ may be irregular). If this is not the case anyway, the proof of Ozaki can be adapted as it is shown in Chapter 2.
9

Invariants d’Iwasawa dans les extensions de Lie p-adiques des corps de nombres / Iwasawa invariants in p-adic Lie extensions of number fiels

Perbet, Guillaume 06 December 2011 (has links)
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généralisés dans les extensions de Lie p-adiques de corps de nombres.Ces invariants ont été introduits par Iwasawa pour les Zp-extensions. Les travaux de Venjakob sur la structure des modules sur l'algèbre d'Iwasawa d'un groupe de Lie p-adique ont permis d'en généraliser la définition à la théorie non-commutative. Par des techniques de descente et une étude algébrique fine de la structure des modules d'Iwasawa sur un groupe non-commutatif, on dégage des formules asymptotiques pour les p-groupes des classes généralisés le long d'une extension de corps de nombres de groupe de Galois p-valué. Ces formules ont pour paramètres les invariants d'Iwasawa de l'extension. Elles sont rendues plus précises dans le cas des Zp-extensions, où on remarque qu'un défaut de descente doit être pris en compte et est d'impact non négligeable sur le résultat final. Ces résultats asymptotiques sont ensuite exploités à l'aide de la théorie du miroir. Ceci conduit à des formules de dualité entre ramification et décomposition concernant les invariants d'Iwasawa / This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie extensions of number fields. These invariants where introduced by Iwasawa for Zp-extensions. In his work on the structure of modules over the Iwasawa algebra of a p-adic Lie group, Venjakob extends the definition to the non commutative theory. Using descent techniques, along with a fine algebraic study of Iwasawa's modules structure over a non commutative group, we obtain asymptotic formulas for generalized p-class groups in a tower of number fields, with a p-valued group as Galois group. These formulas have Iwasawa invariants as parameters. They become more precise for Zp-extensions, where a significant descent default is involved. These asymptotic results are exploited thanks to reflexion theory. This leads to duality formulas between ramification and decomposition for Iwasawa invariants
10

Contribution à l'étude de la conjecture de Gras et de la conjecture principale d'Iwasawa, par les systèmes d'Euler

Viguié, Stéphane 12 December 2011 (has links) (PDF)
Le but de ce travail est de montrer comment la théorie des systèmes d'Euler permet de comparer, dans certaines extensions abéliennes, le module galoisien des unités globales modulo unités de Stark avec le module galoisien des p-classes d'idéaux. On ne s'intéresse ici qu'aux extensions abéliennes ayant pour corps de base k un corps quadratique imaginaire, ou un corps global de caractéristique non nulle. La conjecture de Gras prévoit que pour toute extension abélienne finie K/k, tout nombre premier p premier à [K : k], et tout Qp-caractère ψ irréductible et non trivial de Gal (K/k), les ψ-parties du groupe des p-classes de K et du groupe des unités de K modulo le groupe des unités de Stark ont le même cardinal. Après avoir démontré une version faible de la conjecture, nous reprenons la méthode des systèmes d'Euler afin d'étendre les résultats obtenus entre autres par Rubin, Xu et Zhao. Ensuite nous nous plaçons dans le cas où k est un corps quadratique imaginaire uniquement, et nous considérons une certaine Zp-extension k∞ de k, où p est un nombre premier différent de 2 et 3, décomposé dans k. Nous démontrons que pour toute extension finie K∞ de k∞ abélienne sur k, et tout Cp-caractère irréductible χ du sous-groupe de torsion de Gal(K∞/k), les idéaux caractéristiques des χ-quotients du module des p-classes et du module des unités modulo unités de Stark sont les mêmes. Il s'agit d'une des versions de la conjecture principale de la théorie d'Iwasawa, qui élargit un résultat de Rubin et Bley. C'est aussi une étape pour un travail ultérieur, où nous étendons un résultat de Rubin concernant la conjecture principale à deux variables

Page generated in 0.0637 seconds