Spelling suggestions: "subject:"théorie algébrique dess nombre"" "subject:"théorie algébrique dess nombreuses""
1 |
Théorie d’Iwasawa des motifs d’Artin / Iwasawa theory for Artin motivesMaksoud, Alexandre 13 June 2019 (has links)
Cette thèse étudie, du point de vue de la théorie d'Iwasawa cyclotomique, certains motifs d'Artin non-critiques (au sens de Deligne), et en particulier, ceux attachés à une forme modulaire classique de poids un et p-régulière. Nous définissons dans un premier temps un groupe de Selmer, dont on montre qu'il est de torsion sur l'algèbre d'Iwasawa correspondante. On calcule ensuite le terme constant de sa série caractéristique en termes de logarithmes p-adiques d'unités globales, sous de faibles hypothèses. On met aussi en évidence l'existence d'un phénomène de "zéros triviaux" à la Mazur-Tate-Teitelbaum. Dans un deuxième temps, on construit une fonction L p-adique par déformation en utilisant la théorie des familles de Hida. Pour finir, on formule une Conjecture Principale d'Iwasawa pour de tels motifs d'Artin. On montre qu'elle découle de la Conjecture Principale d'Iwasawa pour les formes modulaires ordinaires de poids supérieur ou égal à 2, et on en montre inconditionnellement une divisibilité. / This thesis studies from the viewpoint of cyclotomic Iwasawa theory certain non-critical Artin motives (in the sense of Deligne), and in particular those attached to classical weight one modular forms that are regular at p. Firstly we define a Selmer group, and show that it is torsion on the corresponding Iwasawa algebra. We then compute the constant term of its caracteristic series in terms of p-adic logarithms of global units, under some mild assumptions. We also highlight a phenomenon of trivial zeros à la Mazur-Tate-Teitelbaum. Secondly we construct a p-adic L-function by deformation by means of Hida theory. Finally we formulate a Iwasawa Main Conjecture for such Artin motives. We show that it follows from the Iwasawa Main Conjecture for ordinary modular forms of weight greater than or equal to 2, and we inconditionally prove one divisibility of our Conjecture.
|
2 |
Sur les lois de composition de BhargavaBeaudet, Louis 13 April 2018 (has links)
Les percées du professeur Manjul Bhargava constituent non seulement une nouvelle approche des formes quadratiques binaires, mais également un prolongement original et contemporain des travaux de Gauss de 1801 qui furent à cette époque, et qui le sont toujours aujourd'hui, une pierre angulaire de la théorie algébrique des nombres. Par le biais d'une bijection astucieuse, les formes quadratiques sont mises en relation avec l'espace des cubes 2 ¿ 2 ¿ 2 ce qui permettra d'engendrer quatorze lois de composition dont en particulier celle de Gauss qui devient un embranchement spécifique à une théorie encore plus générale. Ces lois, que Bhagarva nomme Higher composition laws, seront traitées dans les deux premiers chapitres de ce mémoire. Nous verrons par la suite comment les classes d'anneaux quadratiques peuvent être repensées à la lumière de ces nouvelles lois en plus d'apporter une interprétation naturelle en ce qui a trait aux classes d'idéaux de ces mêmes anneaux quadratiques. Sera ensuite introduite la notion de résolvante pour les anneaux cubiques et quartiques pour ainsi faciliter une paramétrisation avec les formes quadratiques binaires et ternaires. Cette correspondance sera d'une grande utilité lorsque le temps sera venu de déterminer la structure inhérente à ces deux types d'anneaux. Un travail de paramétrisation analogue sera fait en ce qui concerne les anneaux cubiques. Cette paramétrisation a pour origine les recherches des deux mathématiciens B. N. Delone et D. K. Faddeev et, comme nous le verrons, s'imbriquera naturellement dans celles de Bhargava.
|
3 |
Groupes, corps et extensions de Polya : une question de capitulationLeriche, Amandine 01 December 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'ensemble $Int\left(\mathcal O _K \right)$ des polynômes à valeurs entières sur l'anneau $\mathcal{O}_K$ des entiers d'un corps de nombres $K$. Selon Pólya, une base $\left(f_{n}\right)_{n\in \mathbb{N}}$ du $\mathcal O _K$-module $Int\left(\mathcal O _K \right)$ est dite régulière si pour tout $n \in \mathbb{N}$, $\deg(f_{n})=n$. Un corps $K$ tel que $ Int \left(\mathcal{O}_K \right)$ possède une base régulière est dit de Pólya et le groupe de Pólya d'un corps de nombres $K$ est un sous-groupe du groupe de classes de $K$ qui peut être considéré comme une mesure de l'écart pour un corps au fait d'être de Pólya. Nous étudions le groupe de Pólya d'un compositum $L= K_1 K_2$ de corps de nombres galoisiens et établissons des liens avec la ramification des nombres premiers dans chacune des extensions $K_1 /\mathbb{Q}$ et $K_2 /\mathbb{Q}$. Nous appliquons ces résultats aux corps de nombres de petit degré afin d'élargir la famille des corps de Pólya quadratiques déjà caractérisés. Par ailleurs, une condition pour qu'un corps de nombres $K$ soit de Pólya est que tous les produits d'idéaux de $K$ de même norme soient principaux. Par analogie avec le problème classique du plongement, on peut se poser la question suivante : tout corps de nombres $K$ peut-il être plongé dans un corps de Pólya? Nous donnons une réponse positive à cette question : pour tout corps $K$, le corps de classes de Hilbert $H_K$ de $K$ est un corps de Pólya . Toujours par analogie avec le problème de plongement où l'on sait que les idéaux de $\mathcal{O}_K$ deviennent principaux dans $\mathcal{O}_{H_K}$, on peut définir la notion d'extension de Pólya d'un corps $K$ : il s'agit de corps $L$ contenant $K$ dans lesquels le groupe de Pólya de $K$ devient trivial par extensions des idéaux, ce sont aussi des corps $L$ tels que le $\mathcal O _L$-module engendré par $Int\left(\mathcal O _K \right)$ possède une base régulière. Outre $H_K$ dans le cas général, dans le cas où $K$ est une extension abélienne, la capitulation des idéaux ambiges de $K$ montre que le corps de genre de $K$ en est une extension de Pólya. Ceci nous amène à des questions de minimalité et d'unicité concernant les corps et extensions de Pólya.
|
4 |
Réhabiliter la Résonance Magnétique Nucléaire comme réalisation physique pour des ordinateurs quantiques et Résoudre des équations de Pell simultanées par des techniques de calcul quantiqueVan Schenk Brill, Kees 03 December 2010 (has links) (PDF)
Cette thèse contient deux parties. Je décris une approche pour construire une réalisation physique d'un ordinateur quantique par Résonance Magnétique Nucléaire (RMN). Je propose un nouveau cadre pour la RMN dans les réalisations physiques d'un ordinateur quantique. Je construis une description de la RMN à partir de la mécanique quantique avec laquelle je peux construire les opérateurs élémentaires essentiels pour le calcul quantique. Je décris les expériences pour construire ces opérateurs. Je propose un algorithme quantique en temps polynomial pour résoudre des équations de Pell simultanées comme extension de l'algorithme de Hallgren pour des équations de Pell simples.
|
5 |
Capitulation des noyaux sauvages étalesValidire, Romain 24 June 2008 (has links) (PDF)
Ce travail de thèse porte sur deux problèmes distincts, tous deux en lien avec le comportement galoisien de certains noyaux de localisation en cohomologie étale : les noyaux sauvages étales. Fixons un nombre premier p et $F_{\infty}$ une $\Z_p$-extension d'un corps de nombres $F$.<br />La structure de groupe abélien du p-groupe des classes des étages de $F_{\infty}/F$ est asymptotiquement bien connue : nous montrons, au moyen de la théorie d'Iwasawa des $\Z_p$-extensions, un analogue de ce résultat en $K$-théorie supérieure.<br />Dans un deuxième temps, nous étudions le groupe de Galois sur $F_{\infty}$ de la pro-p-extension, non ramifiée, p-décomposée maximale de $F_{\infty}$, lorsque $F_{\infty}$ est la $\Z_p$-extension cyclotomique de $F$. Après avoir établi un lien entre la structure de ce groupe et le comportement galoisien des noyaux sauvages étales, nous donnons divers critères effectifs de non pro-p-liberté pour ce groupe.
|
6 |
Conjecture de brumer-stark non abélienneDejou, Gaëlle 24 June 2011 (has links) (PDF)
La recherche d'annulateurs du groupe des classes d'idéaux d'une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu'un élément de l'anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l'extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l'étude de l'analogue non abélien de l'élément de Brumer, nécessaire à l'établissement d'une conjecture non abélienne. La seconde partie est consacrée à l'énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu'aux propriétés qu'elle vérifie. Nous nous intéressons notamment aux propriétés de changement d'extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d'indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d'abélianité permettant d'obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés.
|
7 |
Conjecture de brumer-stark non abélienne / A non-abelian brumer-Stark conjectureDejou, Gaëlle 24 June 2011 (has links)
La recherche d’annulateurs du groupe des classes d’idéaux d’une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu’un élément de l’anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l’extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l’étude de l’analogue non abélien de l’élément de Brumer, nécessaire à l’établissement d’une conjecture non abélienne. La seconde partie est consacrée à l’énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu’aux propriétés qu’elle vérifie. Nous nous intéressons notamment aux propriétés de changement d’extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d’indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d’abélianité permettant d’obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés. / Finding annihilators of the ideal class group of an abelian extension of Q is a classical subject which goes back to work of Kummer and Stickelberger. The Brumer-Stark conjecture deals with abelian extensions of number fields and predicts that a group ring element, called the Brumer-Stickelberger element, annihilates the ideal class group of the extension under consideration. Moreover it specifies that the generators thus obtained have special properties. The aim of this work is to generalize this conjecture to non-abelian Galois extensions. We first focus on the study of a non-abelian analogue of the Brumer element, necessary to establish a non-abelian generalization of the conjecture. The second part is devoted to the statement of our non-abelian conjecture, and the properties it satisfies. We are particularly interested in extension change properties. We then study the specific case of extensions whose Galois group has an abelian normal subgroup H of prime index. If the Brumer-Stark conjecture associated to certain abelian subextensions holds, we prove two results according to the parity of the cardinal of H : in the odd case, we get the non-abelian Brumer-Stark conjecture, and in the even case, we establish an abelianity result implying under additional hypotheses the proof of the non-abelian conjecture. Thanks to PARI-GP, we finally do some numerical verifications of the nonabelian conjecture, proving its validity in the tested examples.
|
8 |
Sur quelques questions en théorie d'Iwasawa / On some questions in Iwasawa theoryVillanueva Gutiérrez, José Ibrahim 30 June 2017 (has links)
Ce travail de thèse comporte l'étude des invariants logarithmiques le long des $l^{d}$-extensions et se compose de trois parties étroitement reliées. La première partie est un compendium sur les divers approches à l'arithmétique algorithmique, c'est à dire l'étude générale des invariants logarithmiques. En particulier on y présente quatre définitions équivalentes du groupe de classes logarithmiques et on y démontre leur équivalence. On donne aussi une preuve alternative d'un théorème d'Iwasawa de type logarithmique. La deuxième partie s'interprète comme un addendum historique sur l'étude du groupe de classes logarithmiques le long des $l$-extensions. On démontre que sous la conjecture de Gross-Kuz'min la théorie d'Iwasawa peut être bien employée pour l'étude du cas non-cyclotomique. Ainsi, on démontre des relations entre les invariants $mu$ et $lambda$ correspondant au $ell$-groupe de classes avec les invariants $ilde{mu}$ et $ilde{lambda}$ attachés aux groupes de classes logarithmiques. La troisième partie comporte l'étude du module d'Iwasawa logarithmique pour des $l^{d}$-extensions, c'est à dire du groupe de Galois $X=Gal(L_{d}/K_{d})$ de la $ell$-extension maximale abélienne logarithmiquement non-ramifiée du compositum $K_{d}$ des différentes $l$-extensions d'un corps de nombres $K$. On démontre sous la conjecture de Gross-Kuz'min, de façon analogue au cas classique, que $X$ est bien un module noethérien et de torsion sous l'algèbre d'Iwasawa de $K_{d}$. Ainsi, on déduit des relations entre les invariants logarithmiques $ilde{mu}$ et $ilde{lambda}$ des $l$-extensions de $K$ qui satisfont une hypothèse de décomposition. / This work is concerned with the study of logarithmic invariants on $l^{d}$-extensions and is subdivided in three pieces, which are closely related to each other. The first part is a compendium of the different approaches to logarithmic arithmetic, that is the study of the logarithmic invariants. In particular we show the equivalence between the four definitions of the logarithmic class group existing in the literature. Also we give an alternative proof of an Iwasawa logarithmic result. The second part can be thought as an historic addendum on the study of the logarithmic class group over $l$-extensions. Assuming the Gross-Kuz'min conjecture we show that the logarithmic class group can be studied in the Iwasawa setting for non-cyclotomic extensions. We also give relations between the classical $mu$ and $lambda$ invariants and the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ attached to the logarithmic class groups. The third part studies the properties of the Iwasawa logarithmic module for $l^{d}$-extensions, that is the Galois group $X=Gal(L_{d}/K_{d})$ of the maximal abelian $ell$-extension logarithmically unramified of the compositum $K_{d}$ of the different $l$-extensions of a number field $K$. Assuming the Gross-Kuz'min conjecture we show that $X$ is a noetherian torsion module over the Iwasawa algebra of $K_{d}$. We also deduce relations between the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ of the $l$-extensions of $K$ which satisfy a splitting condition.
|
Page generated in 0.1034 seconds