Return to search

Dimension de Hausdorff de lieux de bifurcations maximales en dynamique des fractions rationnelles

Dans l'espace $\mathcal{M}_d$ des modules des fractions rationnelles de degré $d$, le lieu de bifurcation est le support d'un $(1,1)$-courant positif fermé $T_{\textup{bif}}$ appelé \emph{courant de bifurcation}. Ce courant induit une mesure $\mu_{\textup{bif}}=(T_{\textup{bif}})^{2d-2}$ dont le support est le siége de bifurcations maximales. Notre principal résultat est que le support de $\mu_{\textup{bif}}$ est de dimension de Hausdorff totale $2(2d-2)$. Il s'ensuit que l'ensemble des fractions rationnelles de degré $d$ possédant $2d-2$ cycles neutres distincts est dense dans un ensemble de dimension de Hausdorff totale. Remarquons que jusqu'alors, seule l'existence de telles fractions rationnelles (Shishikura) était connue. Mentionnons que pour notre démonstration, nous établissons au préalable que les fractions rationnelles $(2d-2)$-Misiurewicz appartiennent au support de $\mu_{\textup{bif}}$. \par Le dernier chapitre, indépendant du reste de la thése, traite de l'espace $\mathcal{M}_2$. Nous montrons que, dans ce cas, le courant $T_{\textup{bif}}$ se prolonge naturellement á $\p^2$ en un $(1,1)$-courant positif fermé dont nous calculons les nombres de Lelong. Nous montrons aussi que le support de la mesure $\mu_{\textup{bif}}$ est non-borné dans $\mathcal{M}_2$.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00646407
Date25 November 2011
CreatorsGauthier, Thomas
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds