• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriétés extrémales et caractéristiques des exemples de Lattès

Dupont, Christophe 29 November 2002 (has links) (PDF)
Dans la première partie de la thèse, nous caractérisons les exemples de Lattès parmi les endomorphismes holomorphes de CP(k) par l'absolue continuité de leur mesure d'entropie maximale. Il s'ensuit une caractérisation des exemples de Lattès en terme d'exposants de Lyapounoff de cette mesure. Ces résultats montrent que, génériquement, la mesure d'entropie maximale d'un endomorphisme holomorphe de degré d de CP(k) n'est pas absolument continue par rapport à la mesure de Lebesgue (elle est par conséquent singulière, en vertu de son ergodicité), et que l'un au moins de ses exposants est strictement plus grand que log d /2. Ceci répond à une question posée par Fornaess et Sibony. La caractérisation des exemples de Lattès par leur mesure d'entropie maximale repose sur un principe de renormalisation, dont l'élaboration utilise l'interprétation pluripotentialiste de cette mesure comme masse de Monge-Ampère. Le passage de la minimalité des exposants à l'absolue continuité fut établi par Ledrappier en dimension 1, et relève de la théorie ergodique. Les arguments en dimension plus grande que un sont les mêmes. La seconde partie est consacrée à l'étude du bassin d'attraction de l'origine des relevés polynomiaux des exemples de Lattès. Nous montrons que le bord de ces domaines se désingularise explicitement en une hypersurface sphérique compacte. Ces domaines sont donc assez surprenants, puisqu'ils sont proches de la boule euclidienne et admettent des auto-applications holomorphes propres non injectives. Nous construisons la désingularisation du bord du bassin d'attraction dans un fibré en droites au dessus d'un tore, à l'aide de fonctions theta. La description des singularités s'obtient alors grace à quelques éléments de la théorie des invariants.
2

Dimension de Hausdorff de lieux de bifurcations maximales en dynamique des fractions rationnelles

Gauthier, Thomas 25 November 2011 (has links) (PDF)
Dans l'espace $\mathcal{M}_d$ des modules des fractions rationnelles de degré $d$, le lieu de bifurcation est le support d'un $(1,1)$-courant positif fermé $T_{\textup{bif}}$ appelé \emph{courant de bifurcation}. Ce courant induit une mesure $\mu_{\textup{bif}}=(T_{\textup{bif}})^{2d-2}$ dont le support est le siége de bifurcations maximales. Notre principal résultat est que le support de $\mu_{\textup{bif}}$ est de dimension de Hausdorff totale $2(2d-2)$. Il s'ensuit que l'ensemble des fractions rationnelles de degré $d$ possédant $2d-2$ cycles neutres distincts est dense dans un ensemble de dimension de Hausdorff totale. Remarquons que jusqu'alors, seule l'existence de telles fractions rationnelles (Shishikura) était connue. Mentionnons que pour notre démonstration, nous établissons au préalable que les fractions rationnelles $(2d-2)$-Misiurewicz appartiennent au support de $\mu_{\textup{bif}}$. \par Le dernier chapitre, indépendant du reste de la thése, traite de l'espace $\mathcal{M}_2$. Nous montrons que, dans ce cas, le courant $T_{\textup{bif}}$ se prolonge naturellement á $\p^2$ en un $(1,1)$-courant positif fermé dont nous calculons les nombres de Lelong. Nous montrons aussi que le support de la mesure $\mu_{\textup{bif}}$ est non-borné dans $\mathcal{M}_2$.
3

Dynamique holomorphe, théorie du pluripotentiel et applications / Holomorphic dynamics, pluripotential theory and applications

Kaufmann Sacchetto, Lucas 23 June 2016 (has links)
Cette thèse est consacrée à l'étude de quelques problèmes en dynamique holomorphe discrete et continue à l'aide de la Théorie du Pluripotentiel. Le premier problème présenté concerne la description des paires d'endomorphismes holomorphes permutables du plan projectif complexe qui ne partagent pas une itérée. Nous nous intéressons au cas où les degrés des deux applications coïncident après un certain nombre d'itérations. Nous montrons que telles applications sont des exemples de Lattès ou bien des relèvements des exemples de Lattès unidimensionnels. Combiné avec un théorème de T.-C. Dinh et N. Sibony ce résultat complète la classification des paires permutables en dimension deux. Ensuite, nous nous intéressons à la dynamique des laminations par variétés complexes. Nous montrons que, dans une variété kählérienne compacte, le carré de la classe de cohomologie d'un cycle feuilleté dirigé par une lamination transversalement Lipschitz est toujours zéro. Parmi les conséquences nous montrons que l'espace projectif complexe $\pr^{n}$ n'admet pas de cycle feuilleté transversalement Lipschitz de dimension $q \leq \frac{n}{2}$. Cela généralise un résultat de J.E. Forn\ae ss et N. Sibony. Dans la dernière partie nous étudions les mesures de Monge-Ampère à potentiel höldérien. Nous montrons que ces mesures satisfont un analogue d'un théorème de H. Skoda concernant l'intégrabilité exponentielle d'une fonction plurisousharmonique en termes de ses nombres de Lelong. Ce résultat peut être vu comme une très forte compacité pour les fonctions plurisousharmoniques qui sont eux-mêmes un outil fondamental en dynamique holomorphe. / This thesis is devoted to the study of some problems in discrete and continuous holomorphic dynamics with the tools of Pluripotential Theory. The first problem we consider involves the description of commuting pairs of holomorphic endomorphisms of the complex projective plane that do not share an iterate. We consider the case when their degrees coincide after some number of iterations. We show that these maps are either Lattès maps or lifts of one-dimensional Lattès maps. Together with a theorem of T.-C. Dinh and N. Sibony this result completes the classification of commuting pairs in dimension two. Later on, we turn our attention to the dynamics of laminations by complex manifolds. We show that, on a compact Kähler manifold, the square of the cohomology class of a foliated cycle directed by a transversally Lipschitz lamination is always zero. As a corollary we show that the complex projective space $\pr^n$ do not carry any transversally Lipschitz foliated cycle of dimension $q \leq \frac{n}{2}$, generalizing a result by J.E. Forn\ae ss and N. Sibony. In the last part we study Monge-Ampère measures with Hölder continuous potential. We show that these measures satisfy an analogue of a theorem of H. Skoda concerning the exponential integrability of plurisubharmonic functions in terms of its Lelong numbers. This result can be viewed as a strong compactness property of plurisubharmonic functions, a class of functions of fundamental importance in holomorphic dynamics.

Page generated in 0.0585 seconds