Return to search

積分微分方程的數值解

本論文是以探討積分微分方程數值解的問題為主。此文中吾人皆先對問題本身做分析
,討論其存在解,然後再用有限元素法,對連續性的問題做分解,使其變為一非線性
的方程組。而後藉由同倫(HOMOTOPY)法來解此非線性方程組。最後吾人可得到當區
間分割得愈小,真實解與數值解的誤差會愈小。也就是吾人所用之方法,為一個收斂
的方法。
本文共分兩部分,第一部分中,吾人討論一維的微分積分方程在有限區間的問題。於
此部分中,我們分了6個章節。第一節中,給了關於此問題的簡單介紹,並給序一些
必需的假設。第二節中,吾人可得到在第一節的假設下,假如原問題有真實解的話,
那麼此真實解絕對值的極大值(SUPREMUM)必不大於某個大於零的常數。第三節中,
吾人討論原方程的存在解,而證此存在解是經由LERAY-SCHAUDER DEGREE 定理得來的
。且在更強的條件下,會有存在唯一解。更而證明假如原來問題中函數不滿足所給予
的假設,那麼可經由修正(MODIFIED)原來的問題,也可得到原問題存在有解。第四
節中,對原來的方程,經由變分法(VARIATIONAL )的方法,把它變成一非線性的方
程組,而在某些條件下,吾人亦可得到此方程組有解。第五節中,吾人討論此非線性
方程組的數值解。並可得知,當區間分割的愈小,此數值解會更趨近實實的解。第六
節中,吾人給予平滑的多項式子空間來逼近真實解,結果可得到假如每個區間以(k
+1)個點的LAGRANGE多項式來做內插(INTERPOLATION ),可知其收斂速度為O(Hk
(big O),h 是分割區間的最大距離。
第二部分中,吾人所討論的是二維以上的積分微分方程在有界區域的問題,於此部分
中討論的與第一部分中類似,探討其存在,數值解等等問題。
最後吾人並給予一些例子,來加以印證我們所得到的結果。

Identiferoai:union.ndltd.org:CHENGCHI/B2002005822
Creators吳舜堂, WU, SHUN-TANG
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language中文
Detected LanguageUnknown
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.1585 seconds