This study presents methods for understanding, modeling and control of tele-operated pneumatic actuators for rehabilitation in Magnetic Resonance Imaging (MRI). Pneumatic actuators have excellent MRI-compatibility as opposed to conventional electro-mechanical systems; however, the actuator and the system drivers cannot be co-located due to the MRI-compatibility requirements. The actuators are driven via long transmission lines, which affect the system dynamics significantly. Methods provided in this work produced accurate pressure estimation and control by accounting for the pressure dynamics in the lines, which has been neglected by previous work in this area. The effectiveness of the presented modeling and control methods were demonstrated on tele-operation test setups. This research also includes the design of necessary system components for the developed algorithms. An MRI-compatible optical sensor was developed for force feedback and its design was analyzed for high precision. Directions and opportunities for future research are discussed.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/55022 |
Date | 27 May 2016 |
Creators | Turkseven, Melih |
Contributors | Ueda, Jun |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0017 seconds