Nous nous intéressons à l'étude des repésentations du groupe π d'un nœud K de S^3 dans un groupe de Lie résoluble algébrique connexe. Comme généralisation d'un résultat classique de Burde et de Rham, nous montrons que l'étude de l'existence de certaines représentations métabéliennes permet de retrouver la décomposition complète du module d'Alexander à coefficients complexes. En second lieu, nous étudions les deformations d'une représentation réductible métabélienne de π dans SL(3,C). Nous montrons que cette représentation est limite de représentations irréductibles non métabéliennes de π dans SL(3,C) et qu'elle est un point lisse de la vari ́et ́e des repr ́esentations.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00485047 |
Date | 07 October 2008 |
Creators | Jebali, Hajer |
Publisher | Université Blaise Pascal - Clermont-Ferrand II |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds