L'intérêt pour les propriétés thermiques de matériaux nanostructurés est croissant. Ces matériaux sont conçus pour être inclus dans les dispositifs micro-électroniques et les systèmes micro électromécaniques (MEMS) dont le comportement et la fiabilité dépendent fortement de l'évacuation de la chaleur générée. Les matériaux multicouches diélectrique/métal sont de bons candidats pour la conversion thermoélectrique et leur utilisation est envisagée pour diminuer les températures maximales dans les systèmes microélectroniques. La diminution de l'épaisseur des couches permet de diminuer la conductivité thermique, conduisant à un plus grand facteur de mérite de conversion thermoélectrique. Cette diminution est due à la diminution de la conductivité thermique intrinsèque de chaque couche lorsque leur épaisseur décroit jusqu'à des dimensions du même ordre de grandeur que le libre parcours moyen des porteurs de chaleur et à l'influence croissante de la conductance d'interface. La prédiction de la conductivité thermique de tels systèmes passe donc par une simulation fiable du transfert de chaleur aux interfaces. La dynamique moléculaire (DM) est un outil particulièrement bien adapté à ce type d'études. Cependant les résultats des simulations dépendent fortement des potentiels interatomiques utilisés. La comparaison des propriétés prédites à l'aide des différents potentiels interatomiques avec les valeurs expérimentales permet de valider les potentiels pour prédire les propriétés concernées. Dans le premier chapitre, les fonctions mathématiques et les paramètres utilisés dans les potentiels interatomiques sont explicités. Dans le deuxième chapitre, l'objectif est de proposer une méthodologie pour sélectionner les potentiels les plus appropriés pour les études de transfert de chaleur. Cette méthodologie est illustrée pour le Si qui est le semi-conducteur le plus utilisé au sein de dispositifs microélectroniques et MEMS ainsi que pour l'Au, l'Ag et le Cu qui sont les métaux les plus souvent considérés. La conductivité thermique du Si massif est calculée, en utilisant la dynamique moléculaire hors d'équilibre (DMNE) avec trois potentiels parmi les cinq évalués précédemment pour valider cette évaluation. Le système diélectrique/métal qui a été le plus étudié avec la dynamique moléculaire mais également de manière expérimentale jusqu'à présent est certainement le système Si/Au. Les films de Cu et Ag sur des substrats de Si orienté sont les principales combinaisons dans les circuits intégrés de grande échelle. Une paramétrisation du potentiel de type MEAM est développée pour calculer les interactions Si/Au, Si/Ag et Si/Cu dans la troisième partie de ce travail. Les potentiels croisés sont utilisés pour prédire la conductance d'interface et développer les courbes de densité d'états pour les interfaces Si/Au Si/Ag et Si/Cu.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00716440 |
Date | 13 October 2011 |
Creators | Cruz, Carolina Abs Da |
Publisher | INSA de Lyon |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0108 seconds