• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation de cycles de puissance visant à récupérer et à valoriser les rejets thermiques industriels

Khennich, Mohammed January 2010 (has links)
La récupération et la valorisation des rejets thermiques industriels à basse température et leur conversion en électricité constituent un moyen efficace pour la diminution de la consommation énergétique et l'augmentation de l'efficacité énergétique industrielle. Parmi les technologies actuelles et potentiellement utilisées pour la valorisation de l'énergie thermique rejetée par les différents secteurs industriels, on cite les cycles de Rankine utilisant des fluides de travail organiques. La plupart des études qui ont été faites sur ces derniers ne considèrent que l'aspect de l'analyse énergétique interne. Ce projet propose une étude détaillée d'une configuration de cycle de Rankine sans régénérateur et présente une méthodologie permettant la comparaison de cinq fluides de travail (R134a, R123, R141b, NH[indice inférieur 3] et H[indice inférieur 2]O). Ainsi, plusieurs études sont présentées dans ce projet. La première utilise la première loi de la thermodynamique et l'analyse énergétique interne permettant la détermination du rendement thermique et le travail spécifique du cycle. La deuxième considère l'analyse exergétique qui détermine le rendement de la deuxième loi ainsi que les irréversibilités présentes dans chaque composant du cycle. La troisième analyse se penche sur l'optimisation du cycle et la détermination de la plage de la pression d'évaporation. Cela consiste à minimiser la conductance thermique totale des échangeurs thermiques et maximiser la puissance nette du cycle. Il s'en suit une analyse permettant le dimensionnement de la turbine. Dans ce contexte, le paramètre de la taille de la turbine ainsi que le rapport des débits volumiques à l'entrée et à la sortie de la turbine pour chaque fluide de travail sont déterminés. Des valeurs optimales de ces paramètres sont ensuite obtenues dans les conditions qui minimisent la conductance thermique totale des échangeurs de chaleur. De plus, une autre analyse permet la critique des résultats apparus dans une récente publication et prouve l'efficacité du modèle implémenté dans ce projet de recherche. Finalement, une analyse a été réalisée pour obtenir des corrélations généralisées aux conditions de la puissance nette maximale. Les résultats obtenus ont montré la nécessité d'une étude économique qui se base sur le calcul des surfaces d'échange et les coûts d'installation du cycle.
2

Prédiction de la conductance thermique d’interface silicium métal : utilisation de la dynamique moléculaire / Interfacial thermal conductance prediction of silicon-metal systems : a molecular dynamics study

Cruz, Carolina Abs Da 13 October 2011 (has links)
L’intérêt pour les propriétés thermiques de matériaux nanostructurés est croissant. Ces matériaux sont conçus pour être inclus dans les dispositifs micro-électroniques et les systèmes micro électromécaniques (MEMS) dont le comportement et la fiabilité dépendent fortement de l’évacuation de la chaleur générée. Les matériaux multicouches diélectrique/métal sont de bons candidats pour la conversion thermoélectrique et leur utilisation est envisagée pour diminuer les températures maximales dans les systèmes microélectroniques. La diminution de l’épaisseur des couches permet de diminuer la conductivité thermique, conduisant à un plus grand facteur de mérite de conversion thermoélectrique. Cette diminution est due à la diminution de la conductivité thermique intrinsèque de chaque couche lorsque leur épaisseur décroit jusqu’à des dimensions du même ordre de grandeur que le libre parcours moyen des porteurs de chaleur et à l’influence croissante de la conductance d’interface. La prédiction de la conductivité thermique de tels systèmes passe donc par une simulation fiable du transfert de chaleur aux interfaces. La dynamique moléculaire (DM) est un outil particulièrement bien adapté à ce type d’études. Cependant les résultats des simulations dépendent fortement des potentiels interatomiques utilisés. La comparaison des propriétés prédites à l’aide des différents potentiels interatomiques avec les valeurs expérimentales permet de valider les potentiels pour prédire les propriétés concernées. Dans le premier chapitre, les fonctions mathématiques et les paramètres utilisés dans les potentiels interatomiques sont explicités. Dans le deuxième chapitre, l’objectif est de proposer une méthodologie pour sélectionner les potentiels les plus appropriés pour les études de transfert de chaleur. Cette méthodologie est illustrée pour le Si qui est le semi-conducteur le plus utilisé au sein de dispositifs microélectroniques et MEMS ainsi que pour l’Au, l’Ag et le Cu qui sont les métaux les plus souvent considérés. La conductivité thermique du Si massif est calculée, en utilisant la dynamique moléculaire hors d’équilibre (DMNE) avec trois potentiels parmi les cinq évalués précédemment pour valider cette évaluation. Le système diélectrique/métal qui a été le plus étudié avec la dynamique moléculaire mais également de manière expérimentale jusqu’à présent est certainement le système Si/Au. Les films de Cu et Ag sur des substrats de Si orienté sont les principales combinaisons dans les circuits intégrés de grande échelle. Une paramétrisation du potentiel de type MEAM est développée pour calculer les interactions Si/Au, Si/Ag et Si/Cu dans la troisième partie de ce travail. Les potentiels croisés sont utilisés pour prédire la conductance d’interface et développer les courbes de densité d’états pour les interfaces Si/Au Si/Ag et Si/Cu. / Interest in thermal properties of nanostructuredmaterials is growing. These materials are designed to be included in microelectronic devices and micro electromechanical systems (MEMS) whose behavior and reliability depend strongly on the dissipation of generated heat. Multilayer materials dielectric/metal are good candidates for thermoelectric conversion and their use is considered to reduce the maximum temperatures in microelectronic systems. The decrease in the thickness of the layers reduces the thermal conductivity, leading to a larger figure of merit of thermoelectric conversion. This decreasing is due to the decrease of intrinsic thermal conductivity of each layer when the thickness decreases to the dimensions of the same order of magnitude as the mean free path of heat carriers and bigger influence of the interface conductance. Predicting the thermal conductivity of such systems therefore requires a reliable simulation of heat transfer at interfaces. Molecular dynamics is a tool particularly well suited to this type of study. However the simulation results depend strongly on interatomic potentials used. The comparison of properties predicted using different interatomic potentials with experimental results validates the potential for predicting the properties concerned. In the first chapter, the mathematical functions and parameters used in the interatomic potentials are explained. In the second chapter, the objective is to propose a methodology to select the most appropriate potential for studying heat transfer. This methodology is illustrated for Si, the semiconductor most used in microelectronic devices and MEMS as well as for Au, Ag and Cu which are the metals most often seen. The thermal conductivity of bulk Si is calculated using the nonequilibrium molecular dynamics with three potential among the five previously evaluated to confirm this assessment. The system dielectric/metal that has been most studied with molecular dynamics but also experimentally is certainly the system Si/Au. The Cu and Ag films on oriented Si substrates are in the main combinations of large-scale integrated circuits. A parametrisation of MEAM cross-potential is developed to calculate interactions Si/Au, Si/Ag and Si/Cu in the third part of this work. The cross-potentials are used to predict the interfacial thermal conductance and to predict the density of states curves for the interfaces Si/Au Si/Ag and Si/Cu.
3

Prédiction de la conductance thermique d'interface silicium métal : utilisation de la dynamique moléculaire

Cruz, Carolina Abs Da 13 October 2011 (has links) (PDF)
L'intérêt pour les propriétés thermiques de matériaux nanostructurés est croissant. Ces matériaux sont conçus pour être inclus dans les dispositifs micro-électroniques et les systèmes micro électromécaniques (MEMS) dont le comportement et la fiabilité dépendent fortement de l'évacuation de la chaleur générée. Les matériaux multicouches diélectrique/métal sont de bons candidats pour la conversion thermoélectrique et leur utilisation est envisagée pour diminuer les températures maximales dans les systèmes microélectroniques. La diminution de l'épaisseur des couches permet de diminuer la conductivité thermique, conduisant à un plus grand facteur de mérite de conversion thermoélectrique. Cette diminution est due à la diminution de la conductivité thermique intrinsèque de chaque couche lorsque leur épaisseur décroit jusqu'à des dimensions du même ordre de grandeur que le libre parcours moyen des porteurs de chaleur et à l'influence croissante de la conductance d'interface. La prédiction de la conductivité thermique de tels systèmes passe donc par une simulation fiable du transfert de chaleur aux interfaces. La dynamique moléculaire (DM) est un outil particulièrement bien adapté à ce type d'études. Cependant les résultats des simulations dépendent fortement des potentiels interatomiques utilisés. La comparaison des propriétés prédites à l'aide des différents potentiels interatomiques avec les valeurs expérimentales permet de valider les potentiels pour prédire les propriétés concernées. Dans le premier chapitre, les fonctions mathématiques et les paramètres utilisés dans les potentiels interatomiques sont explicités. Dans le deuxième chapitre, l'objectif est de proposer une méthodologie pour sélectionner les potentiels les plus appropriés pour les études de transfert de chaleur. Cette méthodologie est illustrée pour le Si qui est le semi-conducteur le plus utilisé au sein de dispositifs microélectroniques et MEMS ainsi que pour l'Au, l'Ag et le Cu qui sont les métaux les plus souvent considérés. La conductivité thermique du Si massif est calculée, en utilisant la dynamique moléculaire hors d'équilibre (DMNE) avec trois potentiels parmi les cinq évalués précédemment pour valider cette évaluation. Le système diélectrique/métal qui a été le plus étudié avec la dynamique moléculaire mais également de manière expérimentale jusqu'à présent est certainement le système Si/Au. Les films de Cu et Ag sur des substrats de Si orienté sont les principales combinaisons dans les circuits intégrés de grande échelle. Une paramétrisation du potentiel de type MEAM est développée pour calculer les interactions Si/Au, Si/Ag et Si/Cu dans la troisième partie de ce travail. Les potentiels croisés sont utilisés pour prédire la conductance d'interface et développer les courbes de densité d'états pour les interfaces Si/Au Si/Ag et Si/Cu.
4

Transport Thermique aux Interfaces : Angle Critique des Phonons, Transfert à Travers un Gap; Transfert Autour d'une Nanoparticule Colloïdale Cœur-Coquille / Thermal Transport at Interfaces : Phononic Critical Angle, Phonon Tunneling across a Vacuum Gap; Transfer around Core-Shell Colloidal Nanoparticles

Alkurdi, Ali 05 October 2017 (has links)
Cette thèse s'inscrit dans le domaine de la nanothermique, c'est à dire, l'étude des transferts de chaleur à l'échelle du nanomètre, pour lesquels la loi de Fourier n'est plus valide. A cette échelle, l'interface domine le transport thermique par sa résistance au flux d'énergie thermique. Cetterésistance se manifeste par une discontinuité de la température aux interfaces. Il est important de pouvoir la prédire afin de contrôler et aménager les flux thermiques dans les application en microélectroniques où la taille des transistors modernes devient nanomètrique. Le but de cette thèse est d'une part, d'étudier la transmission angulaire des phonons et prédire la résistance de Kapitza aux interfaces entre solides, de quantifier le transfert d'énergie assuré par les phonons au travers d'un gap de vide nanométrique, et d'autre part d'étudier le transfert thermique dans un système nanoparticule cœur-coquille immergé dans l'eau. Nous avons développé une nouvelle méthode de dynamique de réseau couplée à l'utilisation de constantes de force issus des calculs ab-initio. Cette méthode permet d'obtenir la transmission des phonons entre deux solides, en fonction de leur fréquence et vecteur d'onde, en tenant comptede la dispersion des phonons en volume dans les deux milieux. Nous avons également appliqué la méthode pour décrire le transfert thermique à travers un gap de vide entre deux solides. Enfin, nous nous sommes intéressés au transfert thermique autour d'une nanoparticule (NP) immergée dans l'eau et chauffée par un faisceau laser. Nous avons comparé l'efficacité de chauffage des NPs homogènes d'or à celles de type cœur-coquille or-silice / This thesis is devoted to the study of interfacial thermal transport at the nanoscale where Fourier’s law is not valid. This is because, at this scale, phonon mean free path becomes smaller to the characteristic length of the system, thus the heat transfer is no longer diffusive but rather ballistic. As a consequence, the thermal boundary resistance (TBR) becomes a determinant factor in heat transfer. The goal of this thesis is, firstly, to study phonon transmission and predict the thermal boundary conductance at interface between two solids. To this end, we have developed a new approach, which combines lattice dynamics calculations and inputs from ab initio, and we have applied our LD model to two types of solid structures: the face-centered cubic (FCC) crystal solid and the diamond-like crystal solid.Secondly, we aim to quantify the phononic contribution in heat transfer across a nanometric vacuum gap that separates two solids. We have used this ab initio LD model to predict the contribution of phonons in the heat transfer across a vacuum gap in two systems: the Au/vacuum-gap/Au and the Si/vacuum-gap/Si. Our results indicate that phonons do contribute significantly to heat transfer across a nanometric/subnanometric vacuum gap. Finally, we have investigated heat transfer in a system made of a core-shell nanoparticle (NP) immersed in water and heated by a laser pulse. We have used the four temperatures model, we have solved numerically the heat transfer equations in the system, taking into account the thermal boundary resistance (TBR) and the interfacial electron-phonon coupling
5

Nanoscale structuration effects on phonon transport at low temperatures / Transport quantique de phonons dans des nanostructures à très basse température

Blanc, Christophe 05 November 2013 (has links)
Cette thèse, intitulé « Effet de structuration à l'échelle du nanomètre sur le transport de phonon à basse température » c'est déroulé pendant trois ans au sein du groupe Thermodynamique et Biophysique des Petits Systèmes de l'Institut Néel.Il s'agit de comprendre et de contrôler le transport de chaleur au sein d'échantillons ayant des variations de l'ordre du nanomètre. Ces échantillons ont surtout été des nanofils suspendus en silicium. La fabrication a été réalisée au sein de l'Institut Néel. Lors de ces trois années, trois résultats importants ont été réalisés.Tout d'abord, il a fallu vérifier que le transport de chaleur ne soit pas dominé par un effet dû aux contacts entre le nanofil suspendu et le bain thermique. Cela a pu être mis en évidence grâce à la concordance entre les mesures et le modèle appelé Casimir-Ziman. Mais cela a surtout été vérifié avec des fils dont la jonction au bain thermique a été adaptée afin de permettre une transmission proche de l'unité. Ces fils profilés ayant la même conductance thermique que les fils avec une jonction abrupte au bain thermique, cela prouve que la transmission est toujours proche de 1.Ensuite des mesures sur des fils dont la section est ondulée ont permis de montrer une réduction de la conductance thermique. Cette réduction est expliquée par la présence de rétrodiffusion des phonons à la surface, ce qui entraîne une grande réduction de leur libre parcours moyen. Ainsi, les phonons dans un nanofil droit ont un libre parcours moyen jusqu'à 9 fois plus grand que dans ces nanofils à la section ondulée. Des simulations avec la méthode de Monte-Carlo ont permis de mettre en évidence cet effet.Si ces premiers résultats ont été réalisés pour des fils de silicium monocristallin, le dernier travail a porté sur l'étude d'échantillon en nitrure de silicium. Ce matériau est un matériau amorphe. La physique du transport de chaleur au sein des matériaux amorphes n'est pas encore complètement comprise. Cependant les mesures faites sur ces matériaux montrent un comportement similaire, tant qualitatif que quantitatif, pour presque tous les matériaux amorphes. Nous avons donc mesurés des échantillons de différentes sortes, afin de vérifier si ce comportement était toujours valable, lorsque la dimension de l'échantillon est réduite. Le résultat de nos mesures est que la dimension joue un rôle sur le transport. Tout comme dans les matériaux cristallins, la basse dimension de l'échantillon va limiter le transport de chaleur. Cependant le transport dans les échantillons de basses dimensions montre le même comportement qualitatif que les matériaux amorphes massifs. Ce travail peut permettre de donner des pistes pour la compréhension du transport de chaleur au sein des matériaux amorphes.En conclusion ce travail m'a permis de fabriquer puis de mesurer le transport de chaleur dans différents types d'échantillons. Les résultats obtenus permettent une meilleur connaissance du transport des phonons, et donc aident à ouvrir la voie vers un meilleur contrôle du transport de la chaleur. / This PhD entitled "Nanoscale structuration effect on the phonon transport at low temperature" take place for three years in the Thermodynamique et Biophysique des Petits Systèmes of the Institut Néel.The context of this PhD is to understand and control the heat transport in samples with variations at the nanoscale. These samples were mostly suspended silicon nanowires. The production was performed in the Néel Institute. During these three years, three important results have been demonstrated.First, we verify that heat transport is not dominated by an effect due to the contact between the suspended nanowire and the thermal bath. This has been demonstrated by the agreement between the measurements and the model called Casimir-Ziman. It was also mainly verified with wires whose junction to the thermal bath has been adapted to allow transmission close to unity. These profiles nanowires have the same thermal conductance as a nanowire with abrupt junction to the thermal bath. This proves that the transmission is always close to 1.Then measurements on nanowires whose section is corrugated have shown a reduction in thermal conductance. This reduction is explained by the presence of backscatter phonons at the surface, resulting in a large reduction of their mean free path. Thus, the phonons in a smooth nanowire have a mean free path up to 9 times greater than in these corrugated nanowires. Simulations with the Monte-Carlo method also demonstrate this effect.If these first results were achieved for monocrystalline silicon nanowires, my last work has focused on the study sample of silicon nitride. This material is an amorphous one. Physics of heat transport in amorphous materials is not yet fully understood. However, measurements on these materials show a similar behavior, both qualitatively and quantitatively, for almost all amorphous materials. We have measured samples of different kinds, to see if this behavior was still valid when the sample size is reduced. The result of our measurements is that the size plays a role in transport. As in crystalline materials, the small sample size will limit the heat transport. However transport in low-dimensional samples shows the same behavior qualitatively as in bulk amorphous materials. This can help provide clues for understanding the heat transport in amorphous materials.In conclusion, this work has allowed me to make and measure the heat transport in different types of samples. The results allow a better knowledge of the phonon transport, thus helping to pave the way towards a better control of heat transport.
6

Direct molecular dynamics simulation of piezoelectric and piezothermal couplings in crystals / Simulation directe par dynamique moléculaire des couplages piézoélectrique et piézothermique dans les cristaux

Kassem, Wassim 14 September 2015 (has links)
La thèse est axée sur l'examen de l'effet de la contrainte sur la conductivité thermique des matériaux piézoélectriques. Les matériaux piézoélectriques sont des cristaux qui présentent une déformation mécanique lors de l'application d'un champ électrique. Des exemples de tels systèmes sont ZnO, AlN, et SiO2. En utilisant des simulations de dynamique moléculaire, nous avons calculé la conductivité thermique de cristaux de ZnO et AlN sous contrainte. Nous avons aussi calculé la résistance thermique des interfaces SiO/C et ZnO/C soumis à un champ électrique.Nous commençons par le calcul des propriétés piézoélectriques et élastiques de ZnO. Celles-ci serviront à valider les potentiels interatomiques utilisés, et à montrer l'ampleur de la contrainte qu’il est possible d'appliquer. En utilisant la dynamique moléculaire d'équilibre, nous avons estimé le coefficient élastique c33 de ZnO, qui se trouve être en accord avec les valeurs expérimentales. Il a aussi été déterminé que la limite élastique d'un cristal de ZnO est de 6 GPa, ce qui correspond à une déformation de 6%. Nous avons ensuite établi les coefficients piézoélectriques de ZnO en utilisant la dynamique moléculaire de non-équilibre, et il a été constaté que les coefficients piézoélectriques dij sont en accord avec les valeurs de la littérature.Deuxièmement, nous avons examiné l'effet de la pression sur la conductivité thermique intrinsèque de ZnO et d’AlN. La dynamique moléculaire de non-équilibre inverse a été mise en œuvre pour calculer la conductivité parce que les coûts de calcul sont nettement inférieurs à ceux de la méthode d'équilibre, d’autant plus pour ZnO dont le potentiel inter-atomique contient les interactions Coulombiennes. L'effet de taille sur la conductivité thermique de ZnO et AlN a ensuite été étudié. Nous avons montré que la formule de Schelling peut en effet être mise en œuvre pour les deux cristaux pour différentes valeurs de la contrainte. La conductivité thermique pour un cristal de ZnO de taille infinie est extraite de la formule de Schelling, et elle se révèle être de 410 W/mK. La conductivité thermique de cristaux de ZnO sous contrainte a ensuite été analysée. Nous avons montré que, après correction de l'effet de taille, la conductivité thermique suit une dépendance en loi de puissance à la contrainte uniaxiale. De plus, la conductivité thermique de ZnO est affectée par un champ statique externe en raison de la contrainte induite. La conductivité thermique d'AlN est estimée à 3000 W/mK, l'effet de la contrainte ne modifie pas cette valeur du fait du potentiel inter-atomique utlisé. Par conséquent, AlN n’est pas un matériau pertinent pour faire office de switch thermique.Troisièmement, nous avons exploré l'effet d’un déplacement piézoélectrique sur la conductance thermique d’interface de Si2O/graphène et ZnO/graphène. Utilisant la dynamique moléculaire d’équilibre, la conductivité thermique d'un super-réseau dont la période est composée de silice et de graphène polyfeuillet. Le super-réseau a été évalué pour différentes valeurs du champ électrique externe. Nous avons constaté que l'application d'un champ électrique de 20 MV/m positif parallèle à la direction hors-plan du super-réseau conduit à la réduction de la conductivité thermique d'un facteur deux. D'autre part, aucun changement dans la conductance thermique n’est noté pour le super-réseau ZnO/graphène. Cette différence est due aux différences de déformations induites au niveau des interfaces dans le super-réseau. L'effet est recréé dans un super-réseau Si/Ge en appliquant une déformation pour former les interfaces. Cette approche crée une déformation non uniforme qui est susceptible de diffuser les phonons. / The thesis is focused on investigating the effect of strain on the thermal conductivity of piezoelectric materials. Piezoelectric materials are crystals which display a mechanical deformation upon application of an electric field. Examples of such material are ZnO, AlN, and SiO2. Using Molecular Dynamics simulations, we calculate the thermal conductivity of unstrained and strained ZnO and AlN crystals. We also calculate the thermal resistance of SiO/graphene interfaces under strain.We calculate the piezoelectric and elastic properties of ZnO. These will serve as confirmation of the correctness of the inter-atomic potential used, and will serve to show the magnitude of strain that is possible to apply. Using non-equilibrium molecular dynamics, we determine the elastic coefficient of ZnO c33, and we see that it agrees with experimental values. We also determine that the elastic limit of a perfect ZnO crystal is 6 GPa which corresponds to a 6% strain. We also determine the piezoelectric coefficient of ZnO using NEMD, and we find that the piezoelectric coefficient d33 also agrees with literature values.Second, we look at the effect of strain on the intrinsic thermal conductivity of ZnO and AlN. We use reverse non-equilibrium molecular dynamics to calculate the conductivity because the computational costs are significantly lower than those for the equilibrium method; especially for ZnO whose inter-atomic potential contains Coulomb interaction. We also study the size-effect on the thermal conductivity of ZnO and AlN. We show that the Schelling formula can indeed be implemented to both crystals for different values of strain. The infinite length thermal conductivity for ZnO is extracted from the formula, and it is found to be 410 W/mK. We then calculate the thermal conductivity of strained ZnO crystals. We show that after correcting for the size effect the thermal conductivity follows power-law dependence to uniaxial strain. Also, we demonstrate that the thermal conductivity of ZnO can be affected by a static external field due to the induced strain. The infinite length thermal conductivity of AlN is found to be 3000 W/mK. We show that for the case of AlN the effect of strain does not affect the thermal conductivity due to the different inter-atomic bonding. Hence, AlN might not be a useful material for piezothermal application.Third, we explore the effect of piezoelectric strain on the thermal conductance of SiO2/graphene and ZnO/graphene superlattices. Using EMD we calculate the thermal conductivity of a superlattice composed of silica and graphene monolayers. The thermal conductance of the superlattice was evaluated under different values of external electric field. We find that applying a positive electric field parallel to the Z-direction leads to reduction of the thermal conductance by a factor of 2 for an electric field of 20 MV/m. On the other hand, no change in the thermal conductance is noted for ZnO/graphene superlattice. The effect is due to the non-uniform strain induced at the superlattice junctions. The effect is recreated in Si/Ge superlattice by mechanically applying a non-uniform strain at the interface. This approach might be responsible for the scattering of phonons.
7

Transport à travers un canal quantique élémentaire : action du circuit, quantification de la charge et limite quantique du courant de chaleur / Transport across an elementary quantum channel : action of the circuit, charge quantization and quantum limit of heat flow

Jezouin, Sebastien 27 November 2014 (has links)
Ce mémoire de thèse présente trois expériences portant sur le transport quantique dans les conducteurs cohérents à l’échelle élémentaire du canal de conduction. La première étudie comment le transport d’électricité dans un canal est affecté lorsque le canal est inséré dans un circuit modélisé par une impédance linéaire. Nous avons observé empiriquement une loi d’échelle à laquelle obéit la conductance du canal et nous avons démontré expérimentalement une analogie entre ce système et les liquides de Tomonaga-Luttinger. La deuxième s’intéresse à la nature de la charge d’un îlot métallique couplé électriquement au monde extérieur par deux canaux de conduction. Dans le régime de couplage faible, il est bien connu que cette charge est quantifiée en unités de la charge de l’électron. Ici, nous avons caractérisé la transition vers le régime de couplage fort, où la quantification de la charge est détruite par les fluctuations quantiques. La troisième concerne le transport de chaleur dans les conducteurs cohérents. Grâce à un système de mesure de bruit implémenté au cours de ce travail de thèse, nous avons pu, pour la première fois, mesurer quantitativement la conductance thermique d’un unique canal de conduction électronique, que nous avons trouvée en accord avec le quantum de conductance thermique à une résolution de quelques pourcents. / This thesis presents three experiments focusing on quantum transport in coherent conductors at the elementary scale of the conduction channel. The first one studies how electrical transport in a channel is modified when the channel is embedded in a linear circuit characterized by an impedance. We observed empirically that the channel conductance obeys a scaling law and we demonstrated experimentally a mapping of this system to the so-Called Tomonaga-Luttinger liquids. The second one is interested in the charge of a metallic island electrically coupled to the outside world through two conduction channels. In the weak coupling regime, it is well-Known that the island charge is quantized in units of the electron charge. Here we characterized the crossover to the strong coupling regime where charge quantization is destroyed by quantum fluctuations. The third one is about heat transport in coherent conductors. Thanks to a noise measurement setup implemented during this thesis, we were able to measure quantitatively for the first time the thermal conductance of a single electronic channel, which we found in agreement with the thermal conductance quantum to a few % accuracy.
8

Energétique dans les dispositifs à un seul électron basés sur des îlots métalliques et des points quantiques / Energetics in metallic-island and quantum-dot based single-electron devices

Dutta, Bivas 19 November 2018 (has links)
Aujourd'hui, nos appareils électroniques sont de plus en plus densément composés de composants nanoélectroniques. En conséquence, la dissipation de chaleur produite dans ces circuits augmente également énormément, provoquant une déperdition d’énergie considérable, en pure perte. Les effets thermoélectriques entrent en jeu ici car ils permettent d'utiliser cette chaleur perdue pour produire un travail utile. Par conséquent, l’étude du transport thermique et de l’effet thermoélectrique dans les nanostructures revêt une importance significative du point de vue scientifique et technologique.Dans cette thèse, nous présentons nos études expérimentales du transport thermique et thermoélectrique dans différents types de dispositifs à un seul électron, où le flux électronique peut être contrôlé au niveau de l'électron unique.Tout d’abord, nous montrons la mesure du transport de chaleur contrôlé par la grille dans un transistor à un seul électron (SET), agissant comme un commutateur thermique entre deux réservoirs. Nous déterminons la conductance thermique à l’aide d’un bilan thermique en régime permanent prenant en compte les différents chemins du flux de chaleur. La comparaison de la conductance thermique du SET avec sa conductance électrique indique une forte violation de la loi de Wiedemann-Franz.Deuxièmement, nous étendons l’étude du transport thermique dans les dispositifs à un seul électron dans le régime de boîte quantique, où, outre les interactions de Coulomb, il faut également prendre en compte les différents niveaux électroniques discrets. Nous discutons du bilan thermique entre deux réservoirs de chaleur couplés par un seul niveau de point quantique, et de la dissipation des électrons tunnel dans les contacts. Cela produit des formes de diamant de Coulomb dans la carte de température électronique de la source, en fonction de la polarisation et de la tension de grille.Enfin, nous présentons la mesure du transport thermoélectrique dans une jonction à boîte quantique unique, du régime de couplage faible au régime de couplage fort Kondo. Nos expériences introduisent une nouvelle façon de mesurer le pouvoir thermoélectrique en réalisant une condition de circuit ouvert quasi-parfaite. Le pouvoir thermoélectrique dans une boîte faiblement couplée montre le comportement e-périodique avec la charge induite par la grille, alors qu’il montre une période distincte de 2e en présence de corrélation Kondo. L’étude de la dépendance thermique révèle que la résonance de Kondo n’est pas toujours au niveau de Fermi, mais qu’elle peut être légèrement décalée, en accord avec les prédictions théoriques.Cette étude ouvre la porte à l’étude de transistors à une boîte quantique unique dont les propriétés thermodynamiques sont régies par les lois de thermodynamique quantique. / At this age of technologically advanced world, the electronic devices are getting more and more densely packed with micro-electronic elements of nano-scale dimension. As a result the heat dissipation produced in these microelectronic-circuits is also increasing immensely, causing a huge amount of energy loss without any use. The textit{thermoelectric effects} come into play here as one can use this wasted heat to produce some useful work with the help of thermoelectric conversion. In order to achieve such a textit{heat engine} with a reasonably high efficiency, one needs to understand its thermal behavior at the basic level. Therefore, the study of thermal transport and thermoelectric effect in nano-structures has significant importance both from scientific and application point of view.In this thesis we present the experimental studies of thermal and thermoelectric transport in different kinds of single-electron devices, where the electronic flow can be controlled at the single electron level.First, we demonstrate the measurement of gate-controlled heat transport in a Single-Electron Transistor ($SET$), acting as a heat switch between two heat reservoirs. The measurement of temperature of the leads of the $SET$ allows us to determine its thermal conductance with the help of a steady state heat-balance among all possible paths of heat flow. The comparison of thermal conductance of the $SET$ with its electrical conductance indicates a strong violation of the Wiedemann-Franz (WF) law away from the charge degeneracy.Second, we extend the study of thermal transport in single-electron devices to the quantum limit, where in addition to the Coulomb interactions the quantum effects are also need to be taken into account, and therefore the individual discrete electronic levels take part in the transport process. We discuss the heat-balance between two heat reservoirs, coupled through a single Quantum-Dot ($QD$) level, and the dissipation of the tunneling electrons on the leads. This produces Coulomb-diamond shapes in the electronic-temperature map of the `source' lead, as a function of bias and gate voltage.Third, we present the measurement of thermoelectric transport in a single $QD$ junction, starting from the weak coupling regime to the strong coupling-Kondo regime. The experiments introduces a new way of measuring thermovoltage realizing a close to perfect open-circuit condition. The thermopower in a weakly coupled $QD$ shows an expected `$e$' periodic behavior with the gate-induced charge, while it shows a distinct `$2e$' periodic feature in the presence of Kondo spin-correlation. The temperature dependence study of the Kondo-correlated thermopower reveals the fact that the Kondo-resonance is not always pinned to the Fermi level of the leads but it can be slightly off, in agreement with the theoretical predictions.This study opens the door for accessing a single $QD$ junction to operate it as a $QD$-heat engine, where the thermodynamic properties of the device are governed by the laws of textit{quantum thermodynamics}.
9

Development of two techniques for thermal characterization of materials : Scanning Thermal Microscopy (SThM) and 2ω method / Développement de deux techniques de charactérisation thermique des matériaux : La microscopie thermique à sonde locale (SThM) et la méthode 2ω

Assy, Ali 03 February 2015 (has links)
Deux techniques de caractérisation thermique des matériaux et d’analyse du transfert de chaleur aux micro- et nano- échelles ont été étudiées et sont présentées dans ce mémoire. La première technique est la microscopie thermique à sonde locale (SThM). La pointe d’un microscope à force atomique intègre un élément résistif. Utilisée en mode contact, cette pointe, chauffée par effet joule, permet l'excitation thermique localisée de l’échantillon. La détermination des propriétés thermiques de l’échantillon nécessite l'analyse de la réponse de cette pointe avec un modèle du système sonde-échantillon et de son environnement. Un état de l'art général des études réalisées en SThM permet de poser les questions scientifiques actuellement traitées dans le domaine. Une attention particulière est accordée à l'interaction thermique sonde-échantillon. L’étude ici présentée tient compte des propriétés thermiques, de la rugosité et de la mouillabilité de la surface de différents échantillons. Une nouvelle méthodologie est établie pour la spécification du transfert de chaleur échangée par conduction thermique au travers du ménisque de l'eau formé au contact sonde-échantillon. Cette méthodologie est basée sur l'analyse de la dépendance à la température de la sonde des courbes de force-distance obtenues à l'air ambiant. Elle est appliquée à trois sondes de taille, forme et constitution différentes: la sonde Wollaston, la sonde KNT et une sonde en silicium dopé. Quels que soient la sonde et l'échantillon, la contribution du ménisque d’eau à l'interaction est montrée être inférieure à celle de l'air. La conductance thermique au contact solide-solide est déterminée pour différents échantillons. Cela a permis d’identifier le coefficient de transmission de phonons dans le cas de la sonde KNT et des échantillons non-métalliques. La conduction thermique via l’air dépend fortement de la conductivité thermique de l'échantillon. La sensibilité à la conductivité thermique pour les sondes Wollaston et KNT est part ailleurs montrée fortement réduite pour les matériaux de conductivité thermique supérieure à 10 et quelques W.m-1.K-1 respectivement. La seconde technique développée est une méthode d’analyse thermique moins locale nécessitant l’instrumentation de la surface de l’échantillon avec un réseau de sondes résistives filiformes. L’un des fils du réseau, chauffé par un courant alternatif à la fréquence f, a le rôle de source excitatrice continue et à la fréquence 2f de l’échantillon. Un modèle analytique 2D, basé sur le principe des ondes thermiques et développé pour identifier les propriétés thermiques d’échantillons anisotropes est présenté. Des simulations par éléments finis et avec ce modèle ont été utilisées pour dimensionner le montage expérimental et valider la méthode sur un échantillon de silicium pur. Les résultats obtenus à des températures de l’échantillon variant de l’ambiante à 500 K corroborent ceux de la littérature. / Two techniques to characterize the thermal properties of materials and to analyze the heat transfer at the micro/nanoscales have been studied and are presented in this manuscript. The first technique is an Atomic Force Microscopy (AFM)-based Scanning Thermal Microscopy (SThM) technique. Operating in its active mode, the AFM probe integrates a resistive element that is electrically heated. Used in AFM contact mode, it allows the localized thermal excitation of the material to be studied. The determination of the sample thermal properties requires the analysis of the probe thermal response through the modeling of the probe-sample system including its surrounding. Through a state of the art of the SThM studies, the current scientific questions and the analytical models used to analyze the probe-sample system are exposed. Special attention is given to the probe-sample thermal interaction that conditions the tip-sample interface temperature. In this work, a new methodology based on the analysis of the dependence of force-distance curves on probe temperature obtained in ambient air has been established. It permits the study and the specification of the heat rate exchanged between probe and sample through thermal conduction through water meniscus. The methodology has been applied with samples with different thermal properties, surface roughness and wettability to three resistive probes different in size and heater configurations: Wollaston, KNT and doped silicon (DS) probes. Whatever the probe and the sample are, the contribution of water meniscus in the probe-sample interaction has been shown to be lower than the one through air. The thermal conductances at the solid-solid contact were determined for various samples. This allowed identifying the phonon transmission coefficient in the case of KNT probe and a nonmetallic sample. The heat conduction through air strongly depends on the sample thermal conductivity. Moreover, the sensitivity to sample thermal conductivity for the Wollaston and KNT probes is shown to be strongly reduced for thermal conductivities larger than 10 and few W.m-1.K-1 respectively. The second technique developed in this thesis is a less local thermal analysis method. It operates by contact, requiring the implementation of the sample with a network of resistive wire probes. One wire of the network is heated by an alternating current at frequency f and has the role of heating source, continuous and at 2f frequency, for the sample. A 2D analytical model, based on the principle of thermal-waves, was developed to identify though the measurements the effective thermal properties of anisotropic samples. Finite element simulations and this model were used to design the experimental set-up and validate the method on a sample of pure silicon. The results obtained at sample temperatures ranging from ambient to 500 K are consistent with literature.

Page generated in 0.09 seconds