Return to search

Thermische Evolution und Habitabilität erdähnlicher Exoplaneten / Thermal evolution and habitability of terrestrial exoplanets

In der vorliegenden Arbeit werden Methoden der Erdsystemanalyse auf die Untersuchung der Habitabilität terrestrischer Exoplaneten angewandt.

Mit Hilfe eines parametrisierten Konvektionsmodells für die Erde wird die thermische Evolution von terrestrischen Planeten berechnet. Bei zunehmender Leuchtkraft des Zentralsterns wird über den globalen Karbonat-Silikat-Kreislauf das planetare Klima stabilisiert. Für eine photosynthetisch-aktive Biosphäre, die in einem bestimmten Temperaturbereich bei hinreichender CO2-Konzentration existieren kann, wird eine Überlebenspanne abgeschätzt. Der Abstandsbereich um einen Stern, in dem eine solche Biosphäre produktiv ist, wird als photosynthetisch-aktive habitable Zone (pHZ) definiert und berechnet. Der Zeitpunkt, zu dem die pHZ in einem extrasolaren Planetensystem endgültig verschwindet, ist die maximale Lebenspanne der Biosphäre. Für Supererden, massereiche terrestrische Planeten, ist sie umso länger, je massereicher der Planet ist und umso kürzer, je mehr er mit Kontinenten bedeckt ist. Für Supererden, die keine ausgeprägten Wasser- oder Landwelten sind, skaliert die maximale Lebenspanne mit der Planetenmasse mit einem Exponenten von 0,14. Um K- und M-Sterne ist die Überlebensspanne einer Biosphäre auf einem Planeten immer durch die maximale Lebensspanne bestimmt und nicht durch das Ende der Hauptreihenentwicklung des Zentralsterns limitiert. Das pHZ-Konzept wird auf das extrasolare Planetensystem Gliese 581 angewandt. Danach könnte die 8-Erdmassen-Supererde Gliese 581d habitabel sein.

Basierend auf dem vorgestellten pHZ-Konzept wird erstmals die von Ward und Brownlee 1999 aufgestellte Rare-Earth-Hypothese für die Milchstraße quantifiziert. Diese Hypothese besagt, dass komplexes Leben im Universum vermutlich sehr selten ist, wohingegen primitives Leben weit verbreitet sein könnte. Unterschiedliche Temperatur- und CO2-Toleranzen sowie ein unterschiedlicher Einfluss auf die Verwitterung für komplexe und primitive Lebensformen führt zu unterschiedlichen Grenzen der pHZ und zu einer unterschiedlichen Abschätzung für die Anzahl der Planeten, die mit den entsprechenden Lebensformen besiedelt sein könnten. Dabei ergibt sich, dass komplex besiedelte Planeten heute etwa 100-mal seltener sein müssten als primitiv besiedelte. / In this thesis methods of Earth system analysis are applied to the investigation of the habitability of terrestrial exoplanets.

With the help of parameterized convection models for the Earth the thermal evolution of terrestrial planets is calculated. Under increasing central star luminosity the global carbonate-silicate cycle stabilizes the planetary climate. The life span of a photosynthetic-active biosphere existing in a certain temperature interval under adequate CO2 concentration is estimated. The range of orbital distances within which such a biosphere is productive is defined as the photosynthetic-active habitable zone (pHZ) and is calculated. The maximum life span of the biosphere is the point in time when the pHZ of an extrasolar planetary system finally disappears. For super-Earths, i.e. massive terrestrial planets, it is as longer as more massive the planet is and as shorter as more the planet is covered with continents. For super-Earths, which are not pronounced land or water worlds, the maximum life span scales with the planetary mass with an exponent of 0.14. The life span of the biosphere on a planet around K- or M-stars is always determined by the maximum life span and not limited by the end of the main-sequence evolution of the central star. The pHZ approach is applied to the extrasolar planetary system Gliese 581. Accordingly the super-Earth of 8 Earth masses Gliese 581d could be habitable.

Based on the presented pHZ concept the Rare Earth Hypothesis established by Ward and Brownlee 1999 is quantified for the Milky Way. This hypothesis claims that complex life may be very rare in the Universe while primitive life is likely common and widespread. Different temperature and CO2 tolerances as well as a different influence on weathering of complex and primitive life forms result different boundaries of the pHZ and a different estimate of the number of planets potentially harboring these different life forms. It arises that planets with complex life might be 100 times rarer than primitive life bearing planets.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:1648
Date January 2007
CreatorsBounama, Christine
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageGerman
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://creativecommons.org/licenses/by-nc-sa/2.0/de/

Page generated in 0.0025 seconds