In recent years, research on development of chemical, biological and hazardous gas sensors for homeland security have attracted great deal of interest. Actuators possessing high sensitivity, easy fabrication techniques and excellent integration compatibility are in great demand. Towards this need, the development and characterization of improved sol-gel processing for in-house fabrication of highly sensitive and reliable Flexural Plate Wave (FPW) device was pursued This work focuses on an experimental design approach to improve texture and morphology of PZT thin film by systematically controlling the spin, pyrolysis and anneal cycles. The process alterations resulted in an 8-fold increase in the relative intensity of perovskite (111) phase, which consequently yielded a two fold improvement in remnant polarization and coercive field compared to industry recommended processes.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-3966 |
Date | 01 January 2005 |
Creators | Sekhar, Praveen Kumar |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0019 seconds