[pt] Estruturas com elementos de seção aberta e paredes delgadas são amplamente utilizados em estruturas metálicas. Estes elementos têm, em geral, baixa rigidez a torção. Para seções monosimétricas e assimétricas, quando o centro de cisalhamento não coincide com o centro de gravidade, pode ocorrer
acoplamento entre flexão e torção. Devido à baixa rigidez à torção, podem ocorrer grandes rotações das seções transversais da viga. Assim, uma análise do comportamento de tais elementos estruturais, levando em consideração a não linearidade geométrica, é desejável. Com este objetivo, equações diferenciais parciais de movimento que descrevem o acoplamento flexão-flexão-torção são utilizadas, em conjunto com o método de Galerkin, para se obter um conjunto de equações discretizadas de movimentos, que é resolvido pelo método Runge-Kutta. A partir das equações linearizadas, obtêm-se as frequências naturais, cargas críticas axiais e a relação entre carga axial e frequência para vigas com diferentes condições de contorno. A seguir, estudam-se as oscilações não lineares e bifurcações de uma viga engastada-livre submetida a cargas laterais harmônicas. Uma análise paramétrica detalhada, usando várias ferramentas de dinâmica não linear, investiga o comportamento dinâmico não linear e não planar da viga nas três primeiras regiões de ressonância e a influência da não linearidade, posição do carregamento, restrições à torção e parâmetros de controle do carregamento na estabilidade dinâmica da estrutura. / [en] Structural elements with open and thin-walled section are widely used in metal structures. These elements have, in general, low torsional stiffness. For monosymmetric and asymmetric sections, when the shear center does not coincide with the center of gravity coupling between bending and torsion may occur. Due to the low torsional stiffness, large twist beam cross sections may arise. Thus, an analysis of the behavior of such structural elements, taking into account the geometric nonlinearity, is desirable. For this purpose, partial differential equations describing the flexural-flexural-torsional coupling are used in conjunction with the Galerkin method to obtain a set of discretized equations of motion, which is solved by the Runge-Kutta method. From the linearized equations, we obtain the natural frequencies, axial critical loads, and the axial
load and frequency relationship for beams with different boundary conditions. Next, we study the nonlinear oscillations and bifurcations of a clamped-free beam subjected to harmonic lateral loads. A detailed parametric analysis, using various nonlinear dynamics tools, investigates the nonlinear dynamic behavior and nonplanar motions of the beam for the first three regions of resonance and the influence of the non-linearity, loading position, torsional restraints and load control parameters on the dynamic stability of the structure.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:33893 |
Date | 16 May 2018 |
Creators | JULIO CESAR COAQUIRA NINA |
Contributors | PAULO BATISTA GONCALVES |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0019 seconds