Return to search

Unauthorised Session Detection with RNN-LSTM Models and Topological Data Analysis / Obehörig Sessionsdetektering med RNN-LSTM-Modeller och Topologisk Dataanalys

This thesis explores the possibility of using session-based customers data from Svenska Handelsbanken AB to detect fraudulent sessions. Tools within Topological Data Analysis are employed to analyse customers behavior and examine topological properties such as homology and stable rank at the individual level. Furthermore, a RNN-LSTM model is, on a general behaviour level, trained to predict the customers next event and investigate its potential to detect anomalous behavior. The results indicate that simplicial complexes and their corresponding stable rank can be utilized to describe differences between genuine and fraudulent sessions on individual level. The use of a neural network suggests that there are deviant behaviors on general level concerning the difference between fraudulent and genuine sessions. The fact that this project was done without internal bank knowledge of fraudulent behaviour or historical knowledge of general suspicious activity and solely by data handling and anomaly detection shows great potential in session-based detection. Thus, this study concludes that the use of Topological Data Analysis and Neural Networks for detecting fraud and anomalous events provide valuable insight and opens the door for future research in the field. Further analysis must be done to see how effectively one could detect fraud mid-session. / I följande uppsats undersöks möjligheten att använda sessionbaserad kunddata från Svenska Handelsbanken AB för att detektera bedrägliga sessioner. Verktyg inom Topologisk Dataanalys används för att analysera kunders beteende och undersöka topologiska egenskaper såsom homologi och stabil rang på individnivå. Dessutom tränas en RNN-LSTM modell på en generell beteende nivå för att förutsäga kundens nästa händelse och undersöka dess potential att upptäcka avvikande beteende. Resultaten visar att simpliciella komplex och deras motsvarande stabil rang kan användas för att beskriva skillnader mellan genuina och bedrägliga sessioner på individnivå. Användningen av ett neuralt nätverk antyder att det finns avvikande beteenden på en generell nivå avseende skillnaden mellan bedrägliga och genuina sessioner. Det faktum att detta projekt genomfördes utan intern bankkännedom om bedrägerier eller historisk kunskap om allmäna misstänksamma aktiviteter och enbart genom datahantering och anomalidetektion visar stor potential för sessionbaserad detektion. Därmed drar denna studie slutsatsen att användningen av topologisk dataanalys och neurala nätverk för att upptäcka bedrägerier och avvikande händelser ger värdefulla insikter och öppnar dörren för framtida fortsätta studier inom området. Vidare analyser måste göras för att se hur effektivt man kan upptäcka bedrägerier mitt i sessioner.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-339432
Date January 2023
CreatorsMaksymchuk Netterström, Nazar
PublisherKTH, Matematik (Avd.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2023:382

Page generated in 0.002 seconds