Digital beamforming is a powerful signal processing technique used in many communication and radar sensing applications. However, despite its many advantages, its high cost makes it a less popular choice than other directional antenna options. The development of a low cost architecture for digital beamforming would make it a more feasible option, allowing it to be used for a number of new applications. Specifically, the Collaborative, Adaptive Sensing of the Atmosphere (CASA) project’s Distributed Collaborative Adaptive Sensing (DCAS) system, a low cost weather radar system, could benefit from the incorporation of digital beamforming into small, inexpensive but highly functional radars. Existing DBF architectures are implemented in complex systems which include a number of expensive processing modules and other associated hardware. This project shows a low-cost digital beamforming architecture that has been developed by utilizing today’s powerful and inexpensive FPGA devices along with recently available low-voltage-differential-signaling enabled multi-channel analog to digital conversion hardware. The utilization of commercially available devices rather than custom hardware allows this architecture to be manufactured at a fraction of the cost of most. This makes it a viable alternative to the classic dish antennas for the DCAS system, allowing a reduction in size and cost which will benefit deployment. The flexibility of an FPGA-based DBF system will result in a more robust radar system. With this in mind, an architecture has been developed, fabricated and evaluated.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1534 |
Date | 01 January 2010 |
Creators | Seguin, Emmanuel J |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses 1911 - February 2014 |
Page generated in 0.0013 seconds