Throughout recent years, computer based programs have been applied to solve and analyse industrial problems encountered global fields such as automobile design for reduction of CO2-gas, designing wind parks aimed at increasing power output etc. One of these developed programs is Computational Fluid Dynamics (CFD) which numerically solves complex flow behaviour based on computer power. As there is an ongoing expansion of CFD usage in industry, certain issues need to be addressed as they are becoming more frequently encountered. The general demand for the simulation of larger control volumes and more advanced flow processes result in an extensive requirement of computer resources. Moreover, the implementation of commercial CFD codes in small-scaled industrial companies seems to generally be utilised as a black box based on the knowledge of fluid mechanic theory. Increased partnerships between industry and the academic world involving various CFD based design processes generally yield to a verbal communication interface, which is a crucial step in the process given the level of dependency between both sides. Based on these notions, a method for establishing time efficient CFD-models with implementation of volume forces as sink terms in the momentum equation is presented. The internal structure, or parts of the structure, in the simulation domain is removed which reduces the geometrical complexity and along with it, computational demand. These models are the basis of assessing the benefits of utilizing a numerical based design process in industry in which the CFD code is used as a communication tool for knowledge sharing with counterparts in different fields. / As there is an ongoing expansion of CFD usage in industry, certain issues need to be addressed as they are becoming more frequently encountered. The general demand for the simulation of larger control volumes and more advanced flow processes result in an extensive requirement of computer resources. Moreover, the implementation of commercial CFD codes in small-scaled industrial companies seems to generally be utilised as a black box based on the knowledge of fluid mechanic theory. Increased partnerships between industry and the academic world involving various CFD based design processes generally yield to a verbal communication interface, which is a crucial step in the process given the level of dependency between both sides. Based on these notions, a method for establishing time efficient CFD-models with implementation of volume forces as sink terms in the momentum equation is presented. The internal structure, or parts of the structure, in the simulation domain is removed which reduces the geometrical complexity and along with it, computational demand. These models are the basis of assessing the benefits of utilizing a numerical based design process in industry in which the CFD code is used as a communication tool for knowledge sharing with counterparts in different fields.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-31983 |
Date | January 2014 |
Creators | Rezk, Kamal |
Publisher | Karlstads universitet, Institutionen för ingenjörs- och kemivetenskaper, Karlstad |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Karlstad University Studies, 1403-8099 ; 2014:32 |
Page generated in 0.0024 seconds