Return to search

ECOLOGICAL AND SOCIOLOGICAL IMPLICATIONS OF TISZA RIVER MINE TAILINGS POLLUTION AND EFFECT OF CHRONIC CADMIUM EXPOSURE ON FISH PHYSIOLOGY

Metals are ubiquitous and naturally occurring; however, anthropogenic activities have elevated metal concentrations in river sediments above what would be expected naturally. One of the primary anthropogenic sources of metals in freshwater is contamination by mine tailings, a toxic slurry of waste rock and chemicals left over after ore minerals or coal extraction. Mining waste is most often stored in retention ponds, which sometimes leak or fail. One of the worst mine tailings disasters on record occurred on the Tisza River of Central Europe in the winter of 2000, releasing over 240,000 tons of mine tailings laced with metals into the natural environment. Elevated metals in freshwater can negatively affect fish and other aquatic organisms, raising concerns as to the long-term ecological consequences of the spill. Therefore, the objectives of this dissertation were to describe the ecological implications of metals pollution from mining on freshwater systems through an empirical case study of the Tisza River combined with controlled laboratory experiments of chronic cadmium exposure on a model species, channel catfish (Ictalurus punctatus). Specific research questions discussed in the following chapters include: (1.) What is the current distribution of metals in the lower Tisza River Basin and are metals transported from the main channel to floodplain habitats?; (2.) Is there evidence for bioaccumulation and/or trophic transfer of metals to fish in the Tisza?; (3.) What are angler’s perceptions and fish consumption risks in the lower Tisza river basin?; and (4.) What are the effects of sub-lethal exposure to cadmium on growth, development, metabolism, and stress response in a model fish species? The case study of the Tisza River Basin was conducted during early summer in 2013 and 2014. Water, sediment, and fish were collected from the Tisza River as well oxbow lakes along the lower basin. Samples were screened for metals via GF-AAS following standard methods. Additionally, we conducted interviews at each sampling location to determine fish consumption habits. Controlled laboratory exposures were conducted during summer of 2015. Eggs of channel catfish (Ictalurus punctatus) were fertilized in treatment water and raised to 6 month old fingerlings. Treatments of cadmium included concentrations of 0.5 µg L-1 (control), 2 L-1 (low) and 6 L-1 (high), with endpoints of growth, development, cellular stress, metabolism, and general stress response. Results indicate that lakes with the greatest connectivity trended toward elevated metals; however, chlorophyll a concentrations decreased suggesting dilution of nutrients from surrounding agriculture. River connectivity therefore increases ecosystem health of floodplain lakes by ameliorating eutrophication, but as a trade-off with potential contamination of metals. This may have implications for management strategies in the basin as fish from the oxbow lakes also trended toward higher concentrations of metals compared to the river main stem. Although we did not detect any indication that metals are biomagnifying through the fish community, fish are clearly taking up contaminants from the water and sediment. Additionally, although fish fillets generally fell below human consumption guidelines, surveys collected at field sites indicate disparities between health risks and perceptions of those risks. For example, many people believe that fish from the oxbow lakes present a lower risk for metals than the river main stem, converse to our findings. Exposure of channel catfish to cadmium concentrations similar to those observed in the Tisza Basin indicate that negative physiological effects, such as altered carbohydrate metabolism and subsequently growth, can occur in fish at muscle concentrations below consumption guidelines. Although cadmium in Tisza fish fillets were lower than expected, metals may still be problematic for the basin as they may disproportionately affect early life stages of fish. This could skew life histories of exposed populations compared to unaffected fish, potentially reducing growth rates, size at maturity, reproductive output, and lifespan; indicating the need for more paired field and laboratory assessments of chronic metals exposure.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-2454
Date01 August 2017
CreatorsPaul, Jenny Sueanna
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0031 seconds