• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of causal mechanisms on flood conveyance on the Tisza River, Hungary using one-dimensional retro- and scenario-modeling

Evanoff, Elizabeth Nicole 01 December 2010 (has links)
During the past decade, a series of record flood stages have occurred along the Tisza River, resulting in extensive damage and displacing the local floodplain population. Previous research on the Tisza River in Hungary showed increases in flood stages for fixed discharges (above bankfull). These results suggest that a loss of conveyance has taken place on the Tisza River, contributing to recent record flood levels. In order to assess the potential causes of flood conveyance losses, new hydrological and geospatial data were obtained from the Hungarian Federal Hydrological Authority (VITUKI) in order to develop hydrodynamic models for two reference conditions, 1979 and 1999, along two study reaches on the Middle Tisza River. In addition to these models of actual conditions at each time step (i.e., "retro-models"), four "scenario models" were developed in order to test the individual impacts of each of the hypothesized causal mechanisms: 1) channel geometry, 2) levees, 3) floodplain roughness (land cover), and (4) channel roughness. Comparison of the models for actual conditions ("retro-model") and the scenario models allows for quantitative assessments of the impacts of each of these parameters on flood conveyance. In addition to these four scenario models, an additional land cover scenario-model was created to further assess the impact of floodplain roughness on stage. Assessment of the two retro-models showed changes in flood stage along both study reaches over the 20-year time step. Along the upper study reach, changes in stage ranged between 0.64 and 1.64 m. On the lower study reach, changes in stage ranged from 0 to 1.75 m. These changes in stage were larger on average than changes in stage previously detected by Venzcel, 2008. Contributions from the channel geometry scenario model were significant on the upper study reach where channel geometry decreased flood stage by up to 0.58 m at Kisköre over the 20-year time step. This was attributed to the dam that was constructed immediately upstream from the Kisköre gauge on the upper study reach. Construction of a dam would cause incision downstream, and therefore, a decrease in flood stage over time due to channel geometry. On the lower study reach, change in stage due to channel geometry was negligible. Contributions from the levee scenario model were negligible on both the upper and lower study reach with a maximum change in stage over the 20-year time step at only 0.11 m. However, during the time step analyzed, no significant change in levee configuration occurred. Changes in stage due to changes in land cover were also negligible along both study reaches. An additional land cover scenario model was created to assess the impact of land cover change on modern flood levels. This scenario model set Manning's n values for floodplain roughness to 0.04, which approximates roughness for pasture and cropland. This scenario model showed that flood stages will decrease by 0.34-0.40 m, but only if the entire floodplain is converted from woodland to pasture/cropland. Channel roughness accounted for the majority of change in stage during the 20-year time step. Along the upper study reach, channel roughness accounted for an average of 1.51 m of change over the 20-year time step. On the lower study reach, channel roughness accounted for 1.03 m of change. Change in the stage/discharge relationship is the best explanation for changes in stage due to channel roughness. Most likely, the channel did not experience such a large change in roughness during the 20-year time step. Instead, the two flood years used in this analysis were different "types" of floods (with differing degrees of hysteresis), and the stage/discharge relationships could not be easily compared. Comparing these two floods may have exaggerated the total change in stage between the two retro-models. Backwater effects are a likely explanation for the change in hysteresis between the two flood years.
2

Risk Perception and Communication : A Study on How People Living in the Tisza River Basin, Hungary Perceive the Risk of Floods and How the Flood Risk Communication Between Authorities and the Public Could Be Improved

Svahn, Christer January 2013 (has links)
It has been stressed within social sciences that risk management has focused too much on technical solutions and in order to decrease the risks also social factors have to be taken into account, namely the way people perceive risk. Risk perception is an important research field working on these issues. The aim of the study was in the light of the diverging views between the two paradigms to understand which of the psychometric or the cultural theory paradigm that can to a larger extent explain the flood risk perception of people living in the Tisza River basin. Furthermore the aim was to understand how the gap between experts’ and the public’s view on flood risk communication can be understood as well as how the risk communication could be improved. Data was collected through a survey and interviews. The results show that risk perception can partly be explained by either paradigm. To better understand people’s risk perception studies need to be more empirically based, not treat people’s perception as something too abstract and understand the interaction between individuals, society and the environment. The gap between the public’s and experts’ views is not as large as expected. In order to improve flood risk communication, decision makers need a better understanding of citizens’ perceptions and the motivation to include public perception in flood risk management need to be based on the view that the public could have an important input into risk management.
3

ECOLOGICAL AND SOCIOLOGICAL IMPLICATIONS OF TISZA RIVER MINE TAILINGS POLLUTION AND EFFECT OF CHRONIC CADMIUM EXPOSURE ON FISH PHYSIOLOGY

Paul, Jenny Sueanna 01 August 2017 (has links)
Metals are ubiquitous and naturally occurring; however, anthropogenic activities have elevated metal concentrations in river sediments above what would be expected naturally. One of the primary anthropogenic sources of metals in freshwater is contamination by mine tailings, a toxic slurry of waste rock and chemicals left over after ore minerals or coal extraction. Mining waste is most often stored in retention ponds, which sometimes leak or fail. One of the worst mine tailings disasters on record occurred on the Tisza River of Central Europe in the winter of 2000, releasing over 240,000 tons of mine tailings laced with metals into the natural environment. Elevated metals in freshwater can negatively affect fish and other aquatic organisms, raising concerns as to the long-term ecological consequences of the spill. Therefore, the objectives of this dissertation were to describe the ecological implications of metals pollution from mining on freshwater systems through an empirical case study of the Tisza River combined with controlled laboratory experiments of chronic cadmium exposure on a model species, channel catfish (Ictalurus punctatus). Specific research questions discussed in the following chapters include: (1.) What is the current distribution of metals in the lower Tisza River Basin and are metals transported from the main channel to floodplain habitats?; (2.) Is there evidence for bioaccumulation and/or trophic transfer of metals to fish in the Tisza?; (3.) What are angler’s perceptions and fish consumption risks in the lower Tisza river basin?; and (4.) What are the effects of sub-lethal exposure to cadmium on growth, development, metabolism, and stress response in a model fish species? The case study of the Tisza River Basin was conducted during early summer in 2013 and 2014. Water, sediment, and fish were collected from the Tisza River as well oxbow lakes along the lower basin. Samples were screened for metals via GF-AAS following standard methods. Additionally, we conducted interviews at each sampling location to determine fish consumption habits. Controlled laboratory exposures were conducted during summer of 2015. Eggs of channel catfish (Ictalurus punctatus) were fertilized in treatment water and raised to 6 month old fingerlings. Treatments of cadmium included concentrations of 0.5 µg L-1 (control), 2 L-1 (low) and 6 L-1 (high), with endpoints of growth, development, cellular stress, metabolism, and general stress response. Results indicate that lakes with the greatest connectivity trended toward elevated metals; however, chlorophyll a concentrations decreased suggesting dilution of nutrients from surrounding agriculture. River connectivity therefore increases ecosystem health of floodplain lakes by ameliorating eutrophication, but as a trade-off with potential contamination of metals. This may have implications for management strategies in the basin as fish from the oxbow lakes also trended toward higher concentrations of metals compared to the river main stem. Although we did not detect any indication that metals are biomagnifying through the fish community, fish are clearly taking up contaminants from the water and sediment. Additionally, although fish fillets generally fell below human consumption guidelines, surveys collected at field sites indicate disparities between health risks and perceptions of those risks. For example, many people believe that fish from the oxbow lakes present a lower risk for metals than the river main stem, converse to our findings. Exposure of channel catfish to cadmium concentrations similar to those observed in the Tisza Basin indicate that negative physiological effects, such as altered carbohydrate metabolism and subsequently growth, can occur in fish at muscle concentrations below consumption guidelines. Although cadmium in Tisza fish fillets were lower than expected, metals may still be problematic for the basin as they may disproportionately affect early life stages of fish. This could skew life histories of exposed populations compared to unaffected fish, potentially reducing growth rates, size at maturity, reproductive output, and lifespan; indicating the need for more paired field and laboratory assessments of chronic metals exposure.

Page generated in 0.069 seconds