Topological Photonics is a rapidly growing field which explores the ideas of topological invariants adapted from condensed matter physics to optical systems. Thanks to integrated photonics platforms, the evolution of light in nanoscale photonic lattices can enable direct measurement of topological properties of the band-structure. In this degree project, we study the topological Anderson phase transition in disordered one-dimensional lattices, and probe distinct topological phases in photonic superlattices. In first part, we fabricate photonic lattices with different disorder strength, and observe the topological transition from trivial topological Anderson phase to non-trivial topological Anderson phase as the system disorder is increased. In second part, we focus on probing the Zak phase in photonic superlattices. We fabricate a superlattice system that utilizes either bulk excitation or edge excitation. We identify the trivial and non-trivial Zak phase using two methods: first, through reconstructing the intensity evolution in the edge waveguide, second, through calculating the beam displacement in the case of bulk excitation . In order to study the evolution of the light in the nano-scaled photonic lattices, we develop a novel technique: Loss-Induced Scattering Approach (LISA), which enables high fidelity reconstruction of the photonic state evolving in the lattice. / Topologisk fotonik är ett snabbt växande område som utforskar idéerna om topologiska invarianter anpassade från kondenserad materiens fysik till optiska system. Tack vare integrerade fotonikplattformar kan ljusutvecklingen i fotoniska gitter i nanoskala möjliggöra direkt mätning av topologiska egenskaper hos bandstrukturen. I detta examensarbete studerar vi den topologiska Anderson-fasövergången i oordnade endimensionella gitter, och undersöker distinkta topologiska faser i fotoniska supergitter. I den första delen tillverkar vi fotoniska gitter med olika störningsstyrka och observerar den topologiska övergången från trivial topologisk Anderson-fas till icke-trivial topologisk Anderson-fas när systemstörningen ökar. I den andra delen fokuserar vi på att sondera Zak-fasen i fotoniska supergitter. Vi tillverkar ett supergittersystem som använder antingen bulkexcitering eller kantexcitering. Vi identifierar den triviala och icke-triviala Zak-fasen med två metoder: för det första genom att rekonstruera intensitetsutvecklingen i kantvågledaren, för det andra genom att beräkna strålens förskjutning vid bulkexcitation. För att studera utvecklingen av ljuset i de nanoskalade fotoniska gittren, utvecklar vi en ny teknik: Loss-Induced Scattering Approach (LISA), som möjliggör högtrohetsrekonstruktion av det fotoniska tillståndet som utvecklas i gittret.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-314170 |
Date | January 2022 |
Creators | Xu, Zesheng |
Publisher | KTH, Tillämpad fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:138 |
Page generated in 0.0012 seconds