Return to search

Algebraic Simplifications of Metric Information / Algebraiska simplifikationer av metrisk information

This thesis is about how to interpret metric data with topological tools, such as homology. We show how to go from a metric space to a topological space via Vietoris-Rips complexes. We use the usual approach to Topological Data Analysis (TDA), and transform our metric space into tame parametrised vector spaces. It is then shown how to simplify tame parametrised vector spaces. We also present another approach to TDA, where we transform our metric space into a filtrated tame parametrised chain complex. We then show how to simplify chain complexes over fields in order to simplify tame parametrised filtrated chain complexes. / Denna uppsats handlar om att tolka metrisk data med hjälp utav topologiska verktyg, som exempelvis homologi. Vi visar hur man går från ett metriskt rum till ett topologiskt rum via Vieteris-Rips komplex. Vi använder den vanliga metoden till Topologisk Data Analys (TDA), och transformerar vårat metriska rum till tama parametriserade vektorrum. Det visas sedan hur vi kan förenkla tama parametriserade vektorrum. Vi presenterar även en annan metod för TDA, där vi går från ett metriskt rum till ett filtrerat tamt parametriserat kedjekomplex. Sedan visar vi hur man förenklar kedjekomplex över kroppar för att kunna förenkla filtrerade tama parametriserade kedjekomplex.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-277744
Date January 2020
CreatorsErninger, Klas
PublisherKTH, Matematik (Avd.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:252

Page generated in 0.0022 seconds