Return to search

Fonctions zêta des hauteurs des variétés toriques en caractéristique positive

Nous étudions le comportement analytique de la fonction zêta associée à une certaine hauteur anticanonique sur une variété torique projective et lisse, le corps de définition étant un corps global de caractéristique positive. Ce comportement est étroitement lié à l'évolution asymptotique du nombre de points de hauteur bornée sur la variété. Manin et ses collaborateurs ont proposé des formules conjecturales pour le nombre de points de hauteur bornée sur une variété de Fano ou presque de Fano. Dans le cas des variétés toriques définies sur un corps de nombres ces formules ont été démontrées par Batyrev et Tschinkel, puis redémontrées par Salberger sous des hypothèses plus restrictives mais par une méthode entièrement différente. Nous nous intéressons donc dans cette thèse à la version fonctionnelle de ces résultats. Nous commençons par traiter le cas d'une variété torique déployée, en nous inspirant de la méthode de Salberger, basée sur une paramétrisation des points rationnels donnée par les torseurs universels ainsi que sur une inversion de Möbius. Nous expliquons ensuite comment les techniques utilisées dans cette situation peuvent s'appliquer aussi à un contexte motivique, mais notre calcul repose en partie sur une hypothèse non demontrée. Enfin pour examiner le cas de la compactification d'un tore non déployé nous adaptons au cas fonctionnel l'approche de Batyrev et Tshinkel. Leur idée est d'utiliser la formule de Poisson pour obtenir une représentation intégrale de la fonction zêta des hauteurs, intégrale que l'on évalue à l'aide du théorème des résidus. Nous obtenons une formule conforme aux prédictions de Manin et al., modulo le calcul d'un invariant du tore, invariant spécifique à la caractéristique non nulle. Nous n'avons pu mener à bien le calcul de cet invariant que pour des familles particulières de tores algébriques, et dans ce cas la formule obtenue est celle attendue. La question de savoir si la situation est la même pour un tore algébrique quelconque reste ouverte.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00004008
Date07 November 2003
CreatorsBOURQUI, David
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds