The considerable progress in the research and development of thin-walled beam structures responds to their growing use in engineering construction and to their increased need for efficiency in strength and cost. The result is a structure that exhibits large shear strains and important non uniform warping under different loadings, such as non uniform torsion, shear bending and distortion...
A unified approach is formulated in this thesis for 3D thin walled beam structures with arbitrary profile geometries, loading cases and boundary conditions. A single warping function, defined by a linear combination of longitudinal displacements at cross sectional nodes (derived from Prokic work), is enhanced and adapted in order to qualitatively and quantitatively reflect and capture the nature of a widest possible range of behaviors. Constraints are prescribed at the kinematics level in order to enable the study of arbitrary cross sections for general loading. This approach, differing from most published theories, has the advantage of enabling the study of arbitrary cross sections (closed/opened or mixed) without any restrictions or distinctions related to the geometry of the profile. It generates automatic data and characteristic computations from a kinematical discretization prescribed by the profile geometry. The amount of shear bending, torsional and distortional warping and the magnitude of the shear correction factor is computed for arbitrary profile geometries with this single formulation.
The proposed formulation is compared to existing theories with respect to the main assumptions and restrictions. The variation of the location of the torsional center, distortional centers and distortional rotational ratio of a profile is discussed in terms of their dependency on the loading cases and on the boundary conditions.
A 3D beam finite element model is developed and validated with several numerical applications. The displacements, rotations, amount of warping, normal and shear stresses are compared with reference solutions for general loading cases involving stretching, bending, torsion and/or distortion. Some examples concern the case of beam assemblies with different shaped profiles where the connection type determines the nature of the warping transmission. Other analyses –for which the straightness assumption of Timoshenko theory is relaxed– investigate shear deformation effects on the deflection of short and thin beams by varying the aspect ratio of the beam. Further applications identify the cross sectional distortion and highlight the importance of the distortion on the stresses when compared to bending and torsion even in simple loading cases.
Finally, a non linear finite element based on the updated lagrangian formulation is developed by including torsional warping degrees of freedom. An incremental iterative method using the arc length and the Newton-Raphson methods is used to solve the non linear problem. Examples are given to study the flexural, torsional, flexural torsional and lateral torsional buckling problems for which a coupling between the variables describing the flexural and the torsional degrees of freedom occurs. The finite element results are compared to analytical solutions based on different warping functions and commonly used in linear stability for elastic structures having insufficient lateral or torsional stiffnesses that cause an out of plane buckling.
Identifer | oai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-04132005-164714 |
Date | 24 May 2005 |
Creators | Saadé, Katy |
Contributors | Camotim, Dinar, Batoz, Jean-Louis, Espion, Bernard, De Ville De Goyet, Vincent, Warzée, Guy, Bouillard, Philippe |
Publisher | Universite Libre de Bruxelles |
Source Sets | Bibliothèque interuniversitaire de la Communauté française de Belgique |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04132005-164714/ |
Rights | unrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus. |
Page generated in 0.0123 seconds