• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Modeling of Shear in Thin Walled Beams with a Single Warping Function

Saadé, Katy 24 May 2005 (has links)
The considerable progress in the research and development of thin-walled beam structures responds to their growing use in engineering construction and to their increased need for efficiency in strength and cost. The result is a structure that exhibits large shear strains and important non uniform warping under different loadings, such as non uniform torsion, shear bending and distortion... A unified approach is formulated in this thesis for 3D thin walled beam structures with arbitrary profile geometries, loading cases and boundary conditions. A single warping function, defined by a linear combination of longitudinal displacements at cross sectional nodes (derived from Prokic work), is enhanced and adapted in order to qualitatively and quantitatively reflect and capture the nature of a widest possible range of behaviors. Constraints are prescribed at the kinematics level in order to enable the study of arbitrary cross sections for general loading. This approach, differing from most published theories, has the advantage of enabling the study of arbitrary cross sections (closed/opened or mixed) without any restrictions or distinctions related to the geometry of the profile. It generates automatic data and characteristic computations from a kinematical discretization prescribed by the profile geometry. The amount of shear bending, torsional and distortional warping and the magnitude of the shear correction factor is computed for arbitrary profile geometries with this single formulation. The proposed formulation is compared to existing theories with respect to the main assumptions and restrictions. The variation of the location of the torsional center, distortional centers and distortional rotational ratio of a profile is discussed in terms of their dependency on the loading cases and on the boundary conditions. A 3D beam finite element model is developed and validated with several numerical applications. The displacements, rotations, amount of warping, normal and shear stresses are compared with reference solutions for general loading cases involving stretching, bending, torsion and/or distortion. Some examples concern the case of beam assemblies with different shaped profiles where the connection type determines the nature of the warping transmission. Other analyses –for which the straightness assumption of Timoshenko theory is relaxed– investigate shear deformation effects on the deflection of short and thin beams by varying the aspect ratio of the beam. Further applications identify the cross sectional distortion and highlight the importance of the distortion on the stresses when compared to bending and torsion even in simple loading cases. Finally, a non linear finite element based on the updated lagrangian formulation is developed by including torsional warping degrees of freedom. An incremental iterative method using the arc length and the Newton-Raphson methods is used to solve the non linear problem. Examples are given to study the flexural, torsional, flexural torsional and lateral torsional buckling problems for which a coupling between the variables describing the flexural and the torsional degrees of freedom occurs. The finite element results are compared to analytical solutions based on different warping functions and commonly used in linear stability for elastic structures having insufficient lateral or torsional stiffnesses that cause an out of plane buckling.
2

Finite element modeling of shear in thin walled beams with a single warping function

Saadé, Katy 24 May 2005 (has links)
The considerable progress in the research and development of thin-walled beam structures responds to their growing use in engineering construction and to their increased need for efficiency in strength and cost. The result is a structure that exhibits large shear strains and important non uniform warping under different loadings, such as non uniform torsion, shear bending and distortion.<p><p>A unified approach is formulated in this thesis for 3D thin walled beam structures with arbitrary profile geometries, loading cases and boundary conditions. A single warping function, defined by a linear combination of longitudinal displacements at cross sectional nodes (derived from Prokic work), is enhanced and adapted in order to qualitatively and quantitatively reflect and capture the nature of a widest possible range of behaviors. Constraints are prescribed at the kinematics level in order to enable the study of arbitrary cross sections for general loading. This approach, differing from most published theories, has the advantage of enabling the study of arbitrary cross sections (closed/opened or mixed) without any restrictions or distinctions related to the geometry of the profile. It generates automatic data and characteristic computations from a kinematical discretization prescribed by the profile geometry. The amount of shear bending, torsional and distortional warping and the magnitude of the shear correction factor is computed for arbitrary profile geometries with this single formulation.<p><p>The proposed formulation is compared to existing theories with respect to the main assumptions and restrictions. The variation of the location of the torsional center, distortional centers and distortional rotational ratio of a profile is discussed in terms of their dependency on the loading cases and on the boundary conditions.<p><p>A 3D beam finite element model is developed and validated with several numerical applications. The displacements, rotations, amount of warping, normal and shear stresses are compared with reference solutions for general loading cases involving stretching, bending, torsion and/or distortion. Some examples concern the case of beam assemblies with different shaped profiles where the connection type determines the nature of the warping transmission. Other analyses –for which the straightness assumption of Timoshenko theory is relaxed– investigate shear deformation effects on the deflection of short and thin beams by varying the aspect ratio of the beam. Further applications identify the cross sectional distortion and highlight the importance of the distortion on the stresses when compared to bending and torsion even in simple loading cases. <p><p>Finally, a non linear finite element based on the updated lagrangian formulation is developed by including torsional warping degrees of freedom. An incremental iterative method using the arc length and the Newton-Raphson methods is used to solve the non linear problem. Examples are given to study the flexural, torsional, flexural torsional and lateral torsional buckling problems for which a coupling between the variables describing the flexural and the torsional degrees of freedom occurs. The finite element results are compared to analytical solutions based on different warping functions and commonly used in linear stability for elastic structures having insufficient lateral or torsional stiffnesses that cause an out of plane buckling. <p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.4934 seconds