• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diagnostic en place et prévision de l'évolution d'un système d'assainissement non collectif

Bouteldja, Fathe 12 October 2009 (has links) (PDF)
Les filières d'Assainissement Non Collectif (ANC) du fait de leur intérêt technique et économique connaissent un développement important. A ce jour, les gestionnaires de ce type d'ouvrages cherchent à mieux comprendre les phénomènes régissant leur fonctionnement et tentent ainsi d'améliorer cette filière sur le plan de la durabilité, de la fiabilité et de l'optimisation en s'appuyant sur des recommandations scientifiquement étayées auxquelles les études menées dans ce travail s'attachent à répondre. Les principaux objectifs industriels et scientifiques de cette thèse étaient de mieux comprendre le fonctionnement de ces sytèmes et de développer une méthodologie de diagnostic de leur état par la mise au point d'outils et de méthodes adaptés à ce genre d'onvrage. Nous avons proposé dans ce travail une démarche originale d'estimation de la perméabilité saturée ou non d'un sol in situ. Cette démarche est basée d'une part sur des informations de résistance et de granulométrie obtenues par couplage de mesures pénétrométriques et endoscopiques et d'autre part sur la connaissance de la relation résistance densité obtenue dans une base de données de matériaux. Cette démarche a été validée au laboratoire et utilisée in situ. Nous avons aussi proposé une méthodologie de diagnostic basée sur l'utilisation conjointe d'outils non destructifs et rapides à mettre en oeuvre à partir de différentes études réalisées in situ tant sur des ouvrages réels que sur des ouvrages expérimentaux grandeur nature.
2

Prise en compte de la variabilité dans le calcul de structures avec contact

Bellec, Jérémie 20 June 2008 (has links) (PDF)
aL'objectif de ce travail est la représentation et la propagation de variabilités dues aux incertitudes dans lescalculs d'assemblages complexes. Nous avons donc commencé par distinguer les différents types de paramètresvariables à modéliser et par répertorier un certain nombre de moyens permettant d'obtenir des informationsstatistiques sur ceux-ci. Nous avons ensuite fait une étude bibliographique des différentes méthodes de calculpermettant de traiter ces incertitudes avec une attention particulière pour les méthodes probabilistes dites nonintrusives que nous avons testé sur un exemple simple. La disparité des résultats obtenus nous à amener à définir unestimateur d'erreur dans le cadre stochastique permettant de quantifier la qualité des modèles utilisés. A partir de cetestimateur, nous avons définit deux indicateurs heuristiques spécifiques permettant de distinguer la part de l'erreurdue à l'approximation stochastique de celle due à l'approximation géométrique. Ces outils ont ensuite permis dedéfinir une technique de calcul adaptative pour les problèmes stochastiques que nous avons appliqué sur un problèmecomplexe proposé par SNECMA.
3

Towards multifidelity uncertainty quantification for multiobjective structural design

Lebon, Jérémy 12 December 2013 (has links)
This thesis aims at Multi-Objective Optimization under Uncertainty in structural design. We investigate Polynomial Chaos Expansion (PCE) surrogates which require extensive training sets. We then face two issues: high computational costs of an individual Finite Element simulation and its limited precision. From numerical point of view and in order to limit the computational expense of the PCE construction we particularly focus on sparse PCE schemes. We also develop a custom Latin Hypercube Sampling scheme taking into account the finite precision of the simulation. From the modeling point of view, we propose a multifidelity approach involving a hierarchy of models ranging from full scale simulations through reduced order physics up to response surfaces. Finally, we investigate multiobjective optimization of structures under uncertainty. We extend the PCE model of design objectives by taking into account the design variables. We illustrate our work with examples in sheet metal forming and optimal design of truss structures. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
4

Optimal shaping of lightweight structures

Descamps, Benoît 19 November 2013 (has links)
Designing structures for lightness is an intelligent and responsible way for engineers and architects to conceive structural systems. Lightweight structures are able to bridge wide spans with a least amount of material. However, the quest for lightness remains an utopia without the driving constraints that give sense to contemporary structural design.<p><p>Previously proposed computational methods for designing lightweight structures focused either on finding an equilibrium shape, or are restricted to fairly small design applications. In this work, we aim to develop a general, robust, and easy-to-use method that can handle many design parameters efficiently. These considerations have led to truss layout optimization, whose goal is to find the best material distribution within a given design domain discretized by a grid of nodal points and connected by tentative bars. <p><p>This general approach is well established for topology optimization where structural component sizes and system connectivity are simultaneously optimized. The range of applications covers limit analysis and identification of failure mechanisms in soils and masonries. However, to fully realize the potential of truss layout optimization for the design of lightweight structures, the consideration of geometrical variables is necessary. <p><p>The resulting truss geometry and topology optimization problem raises several fundamental and computational challenges. Our strategy to address the problem combines mathematical programming and structural mechanics: the structural properties of the optimal solution are used for devising the novel formulation. To avoid singularities arising in optimal configurations, the present approach disaggregates the equilibrium equations and fully integrates their basic elements within the optimization formulation. The resulting tool incorporates elastic and plastic design, stress and displacements constraints, as well as self-weight and multiple loading.<p><p>Besides, the inherent slenderness of lightweight structures requires the study of stability issues. As a remedy, we develop a conceptually simple but efficient method to include local and nodal stability constraints in the formulation. Several numerical examples illustrate the impact of stability considerations on the optimal design.<p><p>Finally, the investigation on realistic design problems confirms the practical applicability of the proposed method. It is shown how we can generate a range of optimal designs by varying design settings. In that regard, the computational design method mostly requires the designer a good knowledge of structural design to provide the initial guess. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
5

Topology optimization of truss-like structures, from theory to practice

Richardson, James 21 November 2013 (has links)
The goal of this thesis is the development of theoretical methods targeting the implementation of topology optimization in structural engineering applications. In civil engineering applications, structures are typically assemblies of many standardized components, such as bars, where the largest gains in efficiency can be made during the preliminary design of the overall structure. The work is aimed mainly at truss-like structures in civil engineering applications, however several of the developments are general enough to encompass continuum structures and other areas of engineering research too. The research aims to address the following challenges:<p>- Discrete variable optimization, generally necessary for truss problems in civil engineering, tends to be computationally very expensive,<p>- the gap between industrial applications in civil engineering and optimization research is quite large, meaning that the developed methods are currently not fully embraced in practice, and<p>- industrial applications demand robust and reliable solutions to the real-world problems faced by the civil engineering profession.<p><p>In order to face these challenges, the research is divided into several research papers, included as chapters in the thesis.<p>Discrete binary variables in structural topology optimization often lead to very large computational cost and sometimes even failure of algorithm convergence. A novel method was developed for improving the performance of topology optimization problems in truss-like structures with discrete design variables, using so-called Kinematic Stability Repair (KSR). Two typical examples of topology optimization problems with binary variables are bracing systems and steel grid shell structures. These important industrial applications of topology optimization are investigated in the thesis. A novel method is developed for topology optimization of grid shells whose global shape has been determined by form-finding. Furthermore a novel technique for façade bracing optimization is developed. In this application a multiobjective approach was used to give the designers freedom to make changes, as the design advanced at various stages of the design process. The application of the two methods to practical<p>engineering problems, inspired a theoretical development which has wide-reaching implications for discrete optimization: the pitfalls of symmetry reduction. A seemingly self-evident method of cardinality reduction makes use of geometric symmetry reduction in structures in order to reduce the problem size. It is shown in the research that this assumption is not valid for discrete variable problems. Despite intuition to the contrary, for symmetric problems, asymmetric solutions may be more optimal than their symmetric counterparts. In reality many uncertainties exist on geometry, loading and material properties in structural systems. This has an effect on the performance (robustness) of the non-ideal, realized structure. To address this, a general robust topology optimization framework for both continuum and truss-like structures, developing a novel analysis technique for truss structures under material uncertainties, is introduced. Next, this framework is extended to discrete variable, multiobjective optimization problems of truss structures, taking uncertainties on the material stiffness and the loading into account. Two papers corresponding to the two chapters were submitted to the journal Computers and Structures and Structural and Multidisciplinary Optimization. Finally, a concluding chapter summarizes the main findings of the research. A number of appendices are included at the end of the manuscript, clarifying several pertinent issues. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
6

Multicriteria optimization with expert rules for mechanical design

Filomeno Coelho, Rajan 01 April 2004 (has links)
Though lots of numerical methods have been proposed in the literature to optimize me-chanical structures at the final stage of the design process, few designers use these tools since the first stage. However, a minor modification at the first step can bring significant change to the global performances of the structure. Usually, during the initial stage, models are based on theoretical and empirical equations, which are often characterized by mixed variables: continuous (e.g. geometrical dimensions), discrete (e.g. the cross section of a beam available in a catalogue) and/or integer (e.g. the number of layers in a composite material). Furthermore, the functions involved may be non differentiable, or even discontinuous. Therefore, classical algorithms based on the computation of sensi-tivities are no more applicable. <p><p>Consequently, to solve these problems, the most wide-spread meta-heuristic methods are evolutionary algorithms (EAs), which work as follows: the best individuals among an initial population of randomly generated potential solutions are favoured and com-bined (by specific operators like crossover and mutation) in order to create potentially better individuals at the next generation. The creation of new generations is repeated till the convergence is reached. The ability of EAs to explore widely the design space is useful to solve single-objective unconstrained optimization problems, because it gener-ally prevents from getting trapped into a local optimum, but it is also well known that they do not perform very efficiently in the presence of constraints. Furthermore, in many industrial applications, multiple objectives are pursued together. <p><p>Therefore, to take into account the constrained and multicriteria aspects of optimization problems in EAs, a new method called PAMUC (Preferences Applied to MUltiobjectiv-ity and Constraints) has been proposed in this dissertation. First the user has to assign weights to the m objectives. Then, an additional objective function is built by linearly aggregating the normalized constraints. Finally, a multicriteria decision aid method, PROMETHEE II, is used in order to rank the individuals of the population following the m+1 objectives. <p><p>PAMUC has been validated on standard multiobjective test cases, as well as on the pa-rametrical optimization of the purge valve and the feed valve of the Vinci engine, both designed by Techspace Aero for launcher Ariane 5.<p>\ / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
7

Finite element modeling of shear in thin walled beams with a single warping function

Saadé, Katy 24 May 2005 (has links)
The considerable progress in the research and development of thin-walled beam structures responds to their growing use in engineering construction and to their increased need for efficiency in strength and cost. The result is a structure that exhibits large shear strains and important non uniform warping under different loadings, such as non uniform torsion, shear bending and distortion.<p><p>A unified approach is formulated in this thesis for 3D thin walled beam structures with arbitrary profile geometries, loading cases and boundary conditions. A single warping function, defined by a linear combination of longitudinal displacements at cross sectional nodes (derived from Prokic work), is enhanced and adapted in order to qualitatively and quantitatively reflect and capture the nature of a widest possible range of behaviors. Constraints are prescribed at the kinematics level in order to enable the study of arbitrary cross sections for general loading. This approach, differing from most published theories, has the advantage of enabling the study of arbitrary cross sections (closed/opened or mixed) without any restrictions or distinctions related to the geometry of the profile. It generates automatic data and characteristic computations from a kinematical discretization prescribed by the profile geometry. The amount of shear bending, torsional and distortional warping and the magnitude of the shear correction factor is computed for arbitrary profile geometries with this single formulation.<p><p>The proposed formulation is compared to existing theories with respect to the main assumptions and restrictions. The variation of the location of the torsional center, distortional centers and distortional rotational ratio of a profile is discussed in terms of their dependency on the loading cases and on the boundary conditions.<p><p>A 3D beam finite element model is developed and validated with several numerical applications. The displacements, rotations, amount of warping, normal and shear stresses are compared with reference solutions for general loading cases involving stretching, bending, torsion and/or distortion. Some examples concern the case of beam assemblies with different shaped profiles where the connection type determines the nature of the warping transmission. Other analyses –for which the straightness assumption of Timoshenko theory is relaxed– investigate shear deformation effects on the deflection of short and thin beams by varying the aspect ratio of the beam. Further applications identify the cross sectional distortion and highlight the importance of the distortion on the stresses when compared to bending and torsion even in simple loading cases. <p><p>Finally, a non linear finite element based on the updated lagrangian formulation is developed by including torsional warping degrees of freedom. An incremental iterative method using the arc length and the Newton-Raphson methods is used to solve the non linear problem. Examples are given to study the flexural, torsional, flexural torsional and lateral torsional buckling problems for which a coupling between the variables describing the flexural and the torsional degrees of freedom occurs. The finite element results are compared to analytical solutions based on different warping functions and commonly used in linear stability for elastic structures having insufficient lateral or torsional stiffnesses that cause an out of plane buckling. <p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.123 seconds