• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement of applied stresses using the polarization of Rayleigh surface waves

Junge, Michael Dominic Alexander 01 December 2003 (has links)
No description available.
2

A study of residual stresses in thin anisotropic (silicon) plates

Zheng, Tieyu 08 1900 (has links)
No description available.
3

Seasonal Variations of Pavement Layer Moduli Determined Using In Situ Measurements of Pavement Stress and Strain

Swett, Lauren J. January 2007 (has links) (PDF)
No description available.
4

Effects of downset and die coat on stress sensitivity in a 16-pin molded plastic DIP

Paugh, Michael Ernest, 1954- January 1989 (has links)
Stress sensitivity of a 16 - bit D/A converter in a molded plastic DIP has been studied. Device performance was shown to change as a function of package stress. The effects of die position in the package and the presence or absence of die coat on package stress and device performance were determined. Finite element methods were employed for system analysis. Device stress sensitivity was attributed to diffused bit transistors and the mechanism assigned to nonuniformity of stress on the device bit transistors. Die coat (silicone gel) was shown to reduce normal and shear stresses and have little or no effect on X-axial stresses. Lowering the die in the package was shown to increase the X-axial stress uniformity from the die center to edge for die-coated parts and alter the value of shear stresses near the die edge for parts without die coat.
5

Simultaneous measurement of strain and temperature using liquid core optical fiber sensors

De Vries, Marten J. 04 March 2009 (has links)
A liquid core fiber sensor can be used to sense both strain and temperature simultaneously. This liquid core fiber sensor is comprised of a hollow core optical fiber filled with a liquid of a known index of refraction which is slightly higher than that of the silica tube which acts as the cladding. The refractive index fluid is chosen such that the variation of its refractive index with strain and temperature is well defined and linear in the desired range of operation. The core of the sensing fiber contains a fluid which has a thermo-optic coefficient much larger in magnitude (-4.0x10⁻⁴/°C) than that of the silica cladding. This causes the fiber to be more sensitive to temperature changes than all-silica fibers. Both transmitted optical signal intensity and time-of-flight depend strongly on applied strain and temperature. Furthermore, the relative difference between the core and cladding refractive indices changes as a function of both parameters due to the inherently different material types used in the fiber construction. This results in critical strain and temperature regimes within which the refractive index difference is very small, and sensitivity is optimized. Testing of prototype sensors demonstrates these characteristics. A 0.47 m long liquid core fiber containing a liquid with a room temperature refractive index of 1.492 was analyzed. Both time- and intensity-domain behaviors around the device's critical temperature (95°C) confirm theoretical expectations. Simultaneous strain and temperature measurements were performed between 95 °C and 105 °C. Methods for multiplexing liquid core fibers for increasing the range of temperatures that can be monitored were also investigated as well as using those liquid core fibers for cooling purposes. / Master of Science
6

The determination of stresses in machine frames

Baugher, J. W., Roberts, Arthur January 1925 (has links)
no abstract provided by author / Master of Science
7

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Diercks, David Robert 08 1900 (has links)
The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have been compared and exhibit excellent agreement.
8

Multicriteria optimization with expert rules for mechanical design

Filomeno Coelho, Rajan 01 April 2004 (has links)
Though lots of numerical methods have been proposed in the literature to optimize me-chanical structures at the final stage of the design process, few designers use these tools since the first stage. However, a minor modification at the first step can bring significant change to the global performances of the structure. Usually, during the initial stage, models are based on theoretical and empirical equations, which are often characterized by mixed variables: continuous (e.g. geometrical dimensions), discrete (e.g. the cross section of a beam available in a catalogue) and/or integer (e.g. the number of layers in a composite material). Furthermore, the functions involved may be non differentiable, or even discontinuous. Therefore, classical algorithms based on the computation of sensi-tivities are no more applicable. <p><p>Consequently, to solve these problems, the most wide-spread meta-heuristic methods are evolutionary algorithms (EAs), which work as follows: the best individuals among an initial population of randomly generated potential solutions are favoured and com-bined (by specific operators like crossover and mutation) in order to create potentially better individuals at the next generation. The creation of new generations is repeated till the convergence is reached. The ability of EAs to explore widely the design space is useful to solve single-objective unconstrained optimization problems, because it gener-ally prevents from getting trapped into a local optimum, but it is also well known that they do not perform very efficiently in the presence of constraints. Furthermore, in many industrial applications, multiple objectives are pursued together. <p><p>Therefore, to take into account the constrained and multicriteria aspects of optimization problems in EAs, a new method called PAMUC (Preferences Applied to MUltiobjectiv-ity and Constraints) has been proposed in this dissertation. First the user has to assign weights to the m objectives. Then, an additional objective function is built by linearly aggregating the normalized constraints. Finally, a multicriteria decision aid method, PROMETHEE II, is used in order to rank the individuals of the population following the m+1 objectives. <p><p>PAMUC has been validated on standard multiobjective test cases, as well as on the pa-rametrical optimization of the purge valve and the feed valve of the Vinci engine, both designed by Techspace Aero for launcher Ariane 5.<p>\ / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
9

Damage localization in civil engineering structures using dynamic strain measurements / Localisation de défauts dans les structures de génie civil à partir de mesures dynamiques de déformations

Tondreau, Gilles 26 April 2013 (has links)
This thesis focuses on the development of a new method for the continuous<p>monitoring of civil engineering structures in order to locate small damages automatically. A<p>review of the very wide literature on Structural Health Monitoring (SHM) points first out that<p>the methods can be grouped in four categories based on their need or not of a numerical model,<p>as well as their need or not of information of the damaged structure to be applied. This state<p>of the art of the SHM methods highlights the requirement to reach each levels of SHM, which<p>is in particular for the localization of small damages in civil engineering structures the needs<p>for a non-model based output-only damage sensitive feature extraction technique. The origin of<p>the local sensitivity of strains to damages is also analyzed, which justifies their use for damage<p>localization.<p>A new method based on the modal filtering technique which consists in combining linearly<p>the sensor responses in a specific way to mimic a single degree of freedom system and which<p>was previously developed for damage detection is proposed. A very large network of dynamic<p>strain sensors is deployed on the structure and split into several independent local sensor networks.<p>Low computational cost and fast signal processing techniques are coupled to statistical<p>control charts for robust and fully automated damage localization.<p>The efficiency of the method is demonstrated using time-domain simulated data on a simply<p>supported beam and a three-dimensional bridge structure. The method is able to detect and<p>locate very small damages even in the presence of noise on the measurements and variability<p>of the baseline structure if strain sensors are used. The difficulty to locate damages from acceleration<p>sensors is also clearly illustrated. The most common classical methods for damage<p>localization are applied on the simply supported beam and the results show that the modal filtering<p>technique presents much better performances for an accurate localization of small damages<p>and is easier to automate.<p>An improvement of the modal filters method referred to as adaptive modal filters is next<p>proposed in order to enhance the ability to localize small damages, as well as to follow their<p>evolution through modal filters updating. Based on this study, a new damage sensitive feature<p>is proposed and is compared with other damage sensitive features to detect the damages with<p>modal filters to demonstrate its interest. These expectations are verified numerically with the<p>three-dimensional bridge structure, and the results show that the adaptation of the modal filters<p>increases the sensitivity of local filters to damages.<p>Experimental tests have been led first to check the feasibility of modal filters to detect damages<p>when they are used with accelerometers. Two case studies are considered. The first work<p>investigates the experimental damage detection of a small aircraft wing equipped with a network<p>of 15 accelerometers, one force transducer and excited with an electro-dynamic shaker. A<p>damage is introduced by replacing inspection panels with damaged panels. A modified version<p>of the modal filtering technique is applied and compared with the damage detection based principal<p>component analysis of FRFs as well as of transmissibilities. The three approaches succeed<p>in the damage detection but we illustrate the advantage of using the modal filtering algorithm as<p>well as of the new damage sensitive feature. The second experimental application aims at detecting<p>both linear and nonlinear damage scenarios using the responses of four accelerometers<p>installed on the three-storey frame structure previously developed and studied at Los Alamos<p>National Labs. In particular, modal filters are shown to be sensitive to both types of damages,<p>but cannot make the distinction between linear and nonlinear damages.<p>Finally, the new method is tested experimentally to locate damages by considering cheap<p>piezoelectric patches (PVDF) for dynamic strain measurements. Again, two case studies are investigated.<p>The first work investigates a small clamped-free steel plate equipped with 8 PVDFs sensors, and excited with a PZT patch. A small damage is introduced at different locations by<p>fixing a stiffener. The modal filters are applied on three local filters in order to locate damage.<p>Univariate control charts allow to locate automatically all the damage positions correctly.<p>The last experimental investigation is devoted to a 3.78m long I-steel beam equipped with 20<p>PVDFs sensors and excited with an electro-dynamic shaker. Again, a small stiffener is added to<p>mimic the effect of a small damage and five local filters are defined to locate the damage. The<p>damage is correctly located for several positions, and the interest of including measurements<p>under different environmental conditions for the baseline as well as overlapping the local filters<p>is illustrated.<p>The very nice results obtained with these first experimental applications of modal filters<p>based on strains show the real interest of this very low computational cost method for outputonly<p>non-model based automated damage localization of real structures. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.1545 seconds