Return to search

The design and development of a vehicle chassis for a Formula SAE competition car / Izak Johannes Fourie

The Formula SAE is a student based competition organised by SAE International where
engineering students from a university design, develop and test a formula-style race car
prototype to compete against other universities. The competition car needs to satisfy the
competition rules set out by the organisers. The competition strives to stimulate original,
creative problem solving together with innovative engineering design practices.
In any race environment, the primary goal is always to be as competitive as possible. Due to
the competitive nature of motor sport, vehicle components need to withstand various and
severe stresses. The components of a race car vehicle are responsible for the vehicle’s
handling characteristics and reliability. The chassis is a crucial and integral component of a
Formula SAE competition car, primarily responsible for the vehicle’s performance
characteristics. The chassis is the structural component that accommodates all the other
components. A Formula SAE chassis is a structure that requires high torsional stiffness, low
weight as well as the necessary strength properties.
In this study, multiple Formula SAE chassis were designed and developed using computer
aided design software. Each concept’s torsional stiffness, weight and strength properties
were tested using finite element analysis software. The different concepts consisted of
different design techniques and applications. All the concepts were analysed and assessed,
leading to the identification of an acceptable prototype. The prototype was manufactured for
experimental tests.
The designed chassis complied with the Formula SAE rules and regulations. The weight,
torsional stiffness and strength characteristics of the designed chassis frame were also
favourable compared to accepted standards for Formula SAE chassis frames. The
manufactured chassis was prepared for experimental tests in order to validate the simulation
results produced by the finite element analysis. The torsional stiffness, weight and strength
were experimentally determined and the results were compared with the corresponding
simulations results. The comparison of the experimental and simulated results enabled the
validation of the finite element analysis software.
The study draws conclusions about the use of computer aided design and finite element
analysis software as a design tool for the development of a Formula SAE chassis. Closure
about the study is provided with general conclusions, recommendations and research
possibilities for future studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014

Identiferoai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/10954
Date January 2014
CreatorsFourie, Izak Johannes
Source SetsNorth-West University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0077 seconds